Boundary value problems for motion equations of polymeric fluids with nonlinear slip condition on solid walls
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 14-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study boundary value problems describing flows of polymeric fluids with slip on solid walls of the flow domain. We use the nonlinear Navier slip condition. The existence of stationary weak solutions is proved for a boundary value problem in the model of motion of low-concentration aqueous polymer solutions. The global solvability of an initial boundary value problem for Oskolkov's system is also proved. Estimates for the norms of solutions are obtained.
Keywords: motion model for aqueous polymer solutions; Oskolkov's system; slip boundary condition; boundary value problems; weak solutions.
@article{TIMM_2015_21_1_a1,
     author = {M. A. Artemov and E. S. Baranovskii},
     title = {Boundary value problems for motion equations of polymeric fluids with nonlinear slip condition on solid walls},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {14--24},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a1/}
}
TY  - JOUR
AU  - M. A. Artemov
AU  - E. S. Baranovskii
TI  - Boundary value problems for motion equations of polymeric fluids with nonlinear slip condition on solid walls
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 14
EP  - 24
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a1/
LA  - ru
ID  - TIMM_2015_21_1_a1
ER  - 
%0 Journal Article
%A M. A. Artemov
%A E. S. Baranovskii
%T Boundary value problems for motion equations of polymeric fluids with nonlinear slip condition on solid walls
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 14-24
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a1/
%G ru
%F TIMM_2015_21_1_a1
M. A. Artemov; E. S. Baranovskii. Boundary value problems for motion equations of polymeric fluids with nonlinear slip condition on solid walls. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 14-24. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a1/

[1] Pavlovskii V.A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812

[2] Oskolkov A.P., “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, v. 7, Zap. nauch. seminara LOMI, 38, 1973, 98–136 | MR | Zbl

[3] Oskolkov A.P., “O nestatsionarnykh techeniyakh vyazko-uprugikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki, v. 12, Tr. MIAN SSSR, 159, 1983, 103–131 | MR | Zbl

[4] Oskolkov A.P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina - Foigta i zhidkostei Oldroita”, Kraevye zadachi matematicheskoi fiziki, v. 13, Tr. MIAN SSSR, 179, 1988, 126–164 | MR

[5] Sviridyuk G.A., “Ob odnoi modeli dinamiki slaboszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matematika, 1994, no. 1, 62–70 | MR | Zbl

[6] Korpusov M.O., Sveshnikov A.G., “O razrushenii resheniya sistemy uravnenii Oskolkova”, Mat. sb, 200:4 (2009), 83–108 | DOI | MR | Zbl

[7] Baranovskii E.S., “Issledovanie matematicheskikh modelei, opisyvayuschikh techeniya zhidkosti Foigta s lineinoi zavisimostyu komponent skorosti ot dvukh prostranstvennykh peremennykh”, Vestn. VGU. Ser. Fizika. Matematika, 2011, no. 1, 77–93

[8] Baranovskii E.S., “Zadacha optimalnogo granichnogo upravleniya dlya uravnenii dvizheniya polimernykh rastvorov”, Mat. tr., 16:2 (2013), 13–27 | MR

[9] Denn M., “Extrusion instabilities and wall slip”, Annu. Rev. Fluid Mech, 33 (2001), 265–287 | DOI | Zbl

[10] Hayat T., Masood Khan, Ayub M., “On non-linear flows with slip boundary condition”, Z. Angew. Math. Phys., 56 (2005), 1012–1029 | DOI | MR | Zbl

[11] Radzhagopal K.R., “O nekotorykh nereshennykh problemakh nelineinoi dinamiki zhidkostei”, Uspekhi mat. nauk, 58:2 (2003), 111–121 | DOI | MR

[12] Farwig R., “Stationary solutions of compressible Navier–Stokes equations with slip boundary condition”, Comm. Partial Diff. Eq, 14:11 (1989), 1579–1606 | DOI | MR | Zbl

[13] Tani A., Itoh S., Tanaka N., “The initial value problem for the Navier-Stokes equations with general slip boundary condition”, Adv. Math. Sci. Appl, 4 (1994), 51–69 | MR | Zbl

[14] Itoh Sh., Tanaka N., Tani A., “Steady solution and its stability for Navier-Stokes equations with general Navier slip boundary condition”, J.Math. Sci, 159:4 (2009), 5–130 | DOI | MR

[15] Masmoudi N., Rousset F., “Uniform regularity for the Navier-Stokes equation with Navier boundary condition”, Arch. Rational Mech. Anal, 203:2 (2012), 529–575 | DOI | MR | Zbl

[16] Ladyzhenskaya O.A., “O globalnoi odnoznachnoi razreshimosti dvumernykh zadach dlya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, v. 28, Zap. nauch. seminara POMI, 243, 1997, 138–153 | Zbl

[17] Kuzmin M.Yu., O kraevykh zadachakh nekotorykh modelei gidrodinamiki s usloviyami proskalzyvaniya na granitse, dis. ... kand. fiz.-mat. nauk, Voronezh, 2007, 106 pp.

[18] Simon J., “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl, 146:1 (1986), 65–96 | DOI | MR

[19] Galdi G.P., An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Springer, New York, 2011, 1018 pp. | MR | Zbl

[20] Litvinov V.G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 376 pp. | MR

[21] Baranovskii E.S., “Zadacha optimalnogo upravleniya statsionarnym techeniem sredy Dzheffrisa pri uslovii proskalzyvaniya na granitse”, Sib. zhurn. industr. matematiki, 17:1 (2014), 18–27

[22] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[23] Adams R.A., Fournier J.J.F., Sobolev spaces, Elsevier, Amsterdam, 2003, 320 pp. | MR

[24] Skrypnik I.V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1991, 448 pp. | MR