First and second order optimality conditions in vector optimization problems with nontransitive preference relation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 81-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present first and second order conditions, both necessary and sufficient, for $\prec$-minimizers of vector-valued mappings over feasible sets with respect to a nontransitive preference relation $\prec$. Using an analytical representation of the preference relation $\prec$ by means of a suitable family of sublinear functions, we reduce the vector optimization problem under study to a scalar inequality, from which with the tools of variational analysis we then derive minimality conditions for the initial vector optimization problem.
Keywords: vector optimization, nontransitive preference, nonlinear scalarization, second order optimality conditions.
@article{TIMM_2014_20_4_a7,
     author = {V. V. Gorokhovik and M. A. Trofimovich},
     title = {First and second order optimality conditions in vector optimization problems with nontransitive preference relation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {81--96},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a7/}
}
TY  - JOUR
AU  - V. V. Gorokhovik
AU  - M. A. Trofimovich
TI  - First and second order optimality conditions in vector optimization problems with nontransitive preference relation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 81
EP  - 96
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a7/
LA  - ru
ID  - TIMM_2014_20_4_a7
ER  - 
%0 Journal Article
%A V. V. Gorokhovik
%A M. A. Trofimovich
%T First and second order optimality conditions in vector optimization problems with nontransitive preference relation
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 81-96
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a7/
%G ru
%F TIMM_2014_20_4_a7
V. V. Gorokhovik; M. A. Trofimovich. First and second order optimality conditions in vector optimization problems with nontransitive preference relation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 81-96. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a7/

[1] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978, 368 pp. | MR | Zbl

[2] Bakhtin V. I., Gorokhovik V. V., “Usloviya optimalnosti pervogo i vtorogo poryadka v zadachakh vektornoi optimizatsii na metricheskikh prostranstvakh”, Tr. In-ta matematiki i mekhaniki URO RAN, 15, no. 4, 2009, 32–43

[3] Gorokhovik V. V., Usloviya optimalnosti pervogo i vtorogo poryadkov v obschei zadache vektornoi optimizatsii, Preprint No 1(351), In-t matematiki AN BSSR, Minsk, 1989, 44 pp.

[4] Gorokhovik V. V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, 239, Minsk, 1990, 239 pp. ; 2-е изд., УРСС, Москва, 2012, 251 с. | MR

[5] Gorokhovik V. V., “Kasatelnye vektory vtorogo poryadka k mnozhestvam i usloviya minimalnosti dlya tochek podmnozhestv uporyadochennykh normirovannykh prostranstv”, Tr. In-ta matematiki NAN Belarusi, 14, no. 2, 2006, 35–47

[6] Gorokhovik V. V., Konechnomernye zadachi optimizatsii, Izd. tsentr BGU, Minsk, 2007, 239 pp.

[7] Gorokhovik V. V., “Usloviya minimalnosti v zadachakh vektornoi optmiizatsiii s netelesnym konusom polozhitelnykh elementov”, Zhurn. vychislit. matematiki i mat. fiziki, 52:7 (2012), 1192–1214 | Zbl

[8] Gorokhovik V. V., “Usloviya optimalnosti pervogo poryadka zadachakh vektornoi optmiizatsiii s kvazidifferentsiruemym tselevym otobrazheniem i netranzitivnym otnosheniem predpochteniya”, Dokl. NAN Belarusi, 57:6 (2013), 13–19

[9] Gorokhovik V. V., “Neobkhodimye usloviya optimalnosti pervogo poryadka v zadache upravleniya diskretnoi sistemoi po netranzitivnomu vektornomu pokazatelyu kachestva”, Tr. In-ta matematiki NAN Belarusi, 22:1 (2014), 35–50

[10] Gorokhovik V. V., Starovoitova M. A., “Kharakteristicheskie svoistva pryamykh ekzosterov razlichnykh klassov polozhitelno odnorodnykh funktsii”, Tr. In-ta matematiki NAN Belarusi, 19:2 (2011), 12–25 | Zbl

[11] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 479 pp. | MR

[12] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970, 351 pp. | MR

[13] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 390 pp. | MR | Zbl

[14] Kurzhanskii A. B., “Zadacha identifikatsii – teoriya garantirovannykh otsenok”, Avtomatika i telemekhanika, 1991, no. 4, 3–26 | MR | Zbl

[15] Levin M. I., Makarov V. L., Rubinov A. M., Matematicheskie modeli ekonomicheskikh mekhanizmov, Nauka, M., 1993, 373 pp. | MR

[16] Demyanov V. F. [i dr.], Negladkie zadachi teorii optimizatsii i upravleniya, Izd-vo LGU, L., 1982, 323 pp. | MR | Zbl

[17] Krasnoselskii M. A. [i dr.], Priblizhennye resheniya operatornykh uravnenii, Nauka, M., 1969, 456 pp.

[18] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | MR | Zbl

[19] Ben-Tal A., “Second order and related extremality conditions in nonlinear programming”, J. Optim. Theory Appl., 31:2 (1980), 143–165 | DOI | MR | Zbl

[20] Ben-Tal A., Zowe J., “A unified theory of first and second order conditions for extremum problems in topological vector spaces”, Math. Programming Study, 19 (1982), 39–76 | DOI | MR

[21] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer, Berlin, 2000, 601 pp. | MR | Zbl

[22] Castellani M., “A dual representation for proper positively homogeneous functions”, J. Global Optim., 16:4 (2000), 393–400 | DOI | MR | Zbl

[23] Demyanov V. F., “Exhausters of a positively homogeneous function”, Optimization, 45:1 (1999), 13–29 | DOI | MR | Zbl

[24] Demyanov V. F., “Exhausters and convexificators – new tools in nonsmooth analysis”, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, eds. V. Demyanov, A. Rubinov, Kluwer Acad. Publ., Dordrecht, 2000, 85–137 | DOI | MR | Zbl

[25] Florez-Bazan F., Hernandez E., “A unified vector optimization problem: complete scalarizations and applications”, Optimization, 60:12 (2011), 1399–1419 | DOI | MR

[26] Florez-Bazan F., Hernandez E., “Optimality conditions for a unified vector optimization problem with not necessarily preodering relations”, J. Global Optim., 56:2 (2013), 229–315 | MR

[27] Gerstewitz (Tammer) C., “Nichtkonvexe Dualität in der Vektoroptimierung”, Wiss. Z. Tech. Hochsch. Leuna-Merseburg, 25:3 (1983), 357–364 | MR | Zbl

[28] Göpfert A., Tammer Chr., “Theory of vector optimization”, Multiple criteria optimization: state of the art annotated bibliographic surveys, Internat. Ser. Oper. Res. Management Sci., 52, eds. X. Ehrgott, X. Gandibleux, Kluwer Acad. Publ., Boston, 2002, 1–70 | MR | Zbl

[29] Hiriart-Urruty J. B., “Tangent cones, generalized gradients, and mathematical programming in Banach spaces”, Math. Oper. Research, 4:1 (1979), 79–97 | DOI | MR | Zbl

[30] Hiriart-Urruty J. B., “New concepts in nondifferentiable programming”, Bull. Soc. Math. France Mém., 60 (1979), 57–85 | MR | Zbl

[31] Jahn J., Vector optimization. Theory, applications, and extensions, 2nd ed., Springer, Berlin, 2011, 498 pp. | MR | Zbl

[32] Mordukhovich B. S., Variational analysis and generalized differentiation, v. I, Grundlehren der mathematischen Wissenschaften, 330, Basic theory, Springer-Verlag, Berlin, 2006, 592 pp. | MR

[33] Rockafellar R. T., Wets R. J.-B., Variational analysis, Springer-Verlag, Berlin, 1998, 734 pp. | MR | Zbl

[34] Rubinov A. M., Gasimov R. N., “Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation”, J. Global Optim., 29:4 (2004), 455–477 | DOI | MR | Zbl

[35] Shapiro A., “Semi-infinite programming, duality, discretization and optimality conditions”, Optimization, 58:2 (2009), 133–161 | DOI | MR | Zbl

[36] Göpfert A. [et al.], Variational methods in partially ordered spaces, Springer, New York, 2003, 365 pp. | MR | Zbl

[37] Zaffaroni A., “Degrees of efficiency and degrees of minimality”, SIAM J. Control Optim., 42:3 (2003), 1071–1086 | DOI | MR | Zbl