On a differential game in a distributed system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 71-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the game problem of approach for a system whose dynamics is described by a partial differential equation not of Kovalevskaya type, that is not solved in time derivative. In a Hilbert function space, the equation with boundary conditions are written in an abstract form as a differential operator equation. Using the method of resolving functionals, we obtain sufficient conditions for the approach of a dynamical vector of system to a cylindrical terminal set. Results are exemplified by means of a model problem concerning filtering fluids in fractured-porous rocks.
Keywords: differential game, set-valued mapping, resolving functional, partial differential equation, operator.
@article{TIMM_2014_20_4_a6,
     author = {L. A. Vlasenko and A. A. Chikrii},
     title = {On a~differential game in a~distributed system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--80},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a6/}
}
TY  - JOUR
AU  - L. A. Vlasenko
AU  - A. A. Chikrii
TI  - On a differential game in a distributed system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 71
EP  - 80
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a6/
LA  - ru
ID  - TIMM_2014_20_4_a6
ER  - 
%0 Journal Article
%A L. A. Vlasenko
%A A. A. Chikrii
%T On a differential game in a distributed system
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 71-80
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a6/
%G ru
%F TIMM_2014_20_4_a6
L. A. Vlasenko; A. A. Chikrii. On a differential game in a distributed system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 71-80. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a6/

[1] Pontryagin L. S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp. | MR

[2] Krasovskii N. N., Subbotin A. N., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[3] Isaacs R., Differential Games, John Wiley, New York, 1965, 480 pp. | MR | Zbl

[4] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[5] Kurzhanski A. V., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl

[6] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamic systems, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[7] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[8] Kurzhanskii A. G., Melnikov N. B., “O zadache sinteza upravlenii: alternirovannyi integral Pontryagina i uravnenie Gamiltona–Yakobi”, Mat. sb., 191:6 (2000), 69–100 | DOI | MR | Zbl

[9] Nikolskii M. S., “Ob upravlenii pri nalichii protivodeistviya”, Vestn. Mosk. un-ta, 1972, no. 1, 67–72 | MR

[10] Osipov Yu. S., “K teorii differentsialnykh igr v sistemakh s raspredelennymi parametrami”, Dokl. AN SSSR, 223:6 (1975), 1314–1317 | MR | Zbl

[11] Osipov Yu. S., “Pozitsionnoe upravlenie v arabolicheskikh sistemakh”, Prikl. matematika i mekhanika, 41:2 (1977), 195–201 | MR

[12] Vlasenko L. A., Chikrii A. A., “Metod razreshayuschikh funktsionalov dlya odnoi dinamicheskoi igry v sisteme tipa Soboleva”, Problemy upravleniya i informatiki, 2014, no. 4, 5–14

[13] Chikrii A. A., Conflict-controlled processes, Kluwer Acad. Publ., Boston–London–Dordrecht, 1997, 424 pp. | MR | Zbl

[14] Chikrii A. A., “Ob odnom analiticheskom metode v dinamicheskikh igrakh sblizheniya”, Tr. MIAN, 271, 2010, 76–92 | MR

[15] Sobolev S. L., “Zadacha Koshi dlya chastnogo sluchaya sistem, ne prinadlezhaschikh tipu Kovalevskoi”, Dokl. AN SSSR, 82:2 (1952), 205–208 | Zbl

[16] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, Prikl. matematika i mekhanika, 24 (1960), 852–864 | MR | Zbl

[17] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[18] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR

[19] Rutkas A. G., “Zadacha Koshi dlya uravneniya $Ax'(t)+Bx(t)=f(t)$”, Differents. uravneniya, 11:11 (1975), 1996–2010 | MR | Zbl

[20] Vlasenko L. A., Evolyutsionnye modeli s neyavnymi i vyrozhdennymi differentsialnymi uravneniyami, Izd-vo “Sistemnye tekhnologii”, Dnepropetrovsk, 2006, 273 pp.

[21] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, Inostr. lit., M., 1962, 830 pp. | MR

[22] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990, 461 pp. | MR | Zbl

[23] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 500 pp. | MR | Zbl

[24] Rutkas A. G., Vlasenko L. A., “Existence, uniqueness and continuous dependence for implicit semilinear functional differential equations”, Nonlinear Anal., 55:1–2 (2003), 125–139 | DOI | MR | Zbl