On a~differential game in a~distributed system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 71-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the game problem of approach for a system whose dynamics is described by a partial differential equation not of Kovalevskaya type, that is not solved in time derivative. In a Hilbert function space, the equation with boundary conditions are written in an abstract form as a differential operator equation. Using the method of resolving functionals, we obtain sufficient conditions for the approach of a dynamical vector of system to a cylindrical terminal set. Results are exemplified by means of a model problem concerning filtering fluids in fractured-porous rocks.
Keywords: differential game, set-valued mapping, resolving functional, partial differential equation, operator.
@article{TIMM_2014_20_4_a6,
     author = {L. A. Vlasenko and A. A. Chikrii},
     title = {On a~differential game in a~distributed system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a6/}
}
TY  - JOUR
AU  - L. A. Vlasenko
AU  - A. A. Chikrii
TI  - On a~differential game in a~distributed system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 71
EP  - 80
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a6/
LA  - ru
ID  - TIMM_2014_20_4_a6
ER  - 
%0 Journal Article
%A L. A. Vlasenko
%A A. A. Chikrii
%T On a~differential game in a~distributed system
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 71-80
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a6/
%G ru
%F TIMM_2014_20_4_a6
L. A. Vlasenko; A. A. Chikrii. On a~differential game in a~distributed system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 71-80. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a6/