A solution class of the Euler equation in a torus with solenoidal velocity field
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 60-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A system of equations with respect to a pair $(\mathbf V,p)$ of a scalar field and a vector field in a torus $D$ is considered. The system consists of the Euler equation with a given vector field $\mathbf f$ and the solenoidality equation for the field $\mathbf V$. We seek for solutions $(\mathbf V,p)$ of this system for which lines of the vector field $\mathbf V$ inside $D$ coincide with meridians of tori embedded in $D$ with the same circular axis. Conditions on the vector field $\mathbf f$ under which the problem is solvable are established, and the whole class of such solutions is described.
Keywords: scalar and vector fields, curl.
Mots-clés : Euler equation, divergence
@article{TIMM_2014_20_4_a5,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {A solution class of the {Euler} equation in a~torus with solenoidal velocity field},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {60--70},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a5/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - A solution class of the Euler equation in a torus with solenoidal velocity field
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 60
EP  - 70
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a5/
LA  - ru
ID  - TIMM_2014_20_4_a5
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T A solution class of the Euler equation in a torus with solenoidal velocity field
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 60-70
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a5/
%G ru
%F TIMM_2014_20_4_a5
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. A solution class of the Euler equation in a torus with solenoidal velocity field. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 60-70. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a5/

[1] Vereschagin V. P., Subbotin Yu. N., Chernykh N. I., “K mekhanike vintovykh potokov v idealnoi neszhimaemoi nevyazkoi sploshnoi srede”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 120–134

[2] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, M.–L., 1947, 392 pp.

[3] Kolmogorov A. N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR, 93:5 (1953), 763–766 | MR | Zbl

[4] Negrini P., “Stability problem for the Euler equation on the 2-dimensional torus”, S. Paulo J. of Math. Sci., 5:1 (2011), 89–98 | DOI | MR