Mots-clés : communication constrains
@article{TIMM_2014_20_4_a4,
author = {M. P. Vashchenko and Ya. S. Pronin and A. A. Shananin},
title = {A mathematical model of the economics of railway cargo transportation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {44--59},
year = {2014},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a4/}
}
TY - JOUR AU - M. P. Vashchenko AU - Ya. S. Pronin AU - A. A. Shananin TI - A mathematical model of the economics of railway cargo transportation JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 44 EP - 59 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a4/ LA - ru ID - TIMM_2014_20_4_a4 ER -
M. P. Vashchenko; Ya. S. Pronin; A. A. Shananin. A mathematical model of the economics of railway cargo transportation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 44-59. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a4/
[1] Kantorovich L. V., Gavurin M. K., “Primenenie matematicheskikh metodov v voprosakh analiza gruzopotokov”, Problemy povysheniya effektivnosti raboty transporta, Izd-vo AN SSSR, M., 1949, 110–138
[2] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988, 264 pp. | MR
[3] Lindahl E., “Just taxation – A positive solution”, Classes in the Theory of Public Finance, eds. R. A. Musgrave, A. T. Peacok, Macmillian, New York, 1958, 168–176, ed. trans. (English) E. Henderson
[4] Bulavskii V. A., Kalashnikov V. V., “Metod odnoparametricheskoi progonki dlya issledovaniya sostoyaniya ravnovesiya”, Ekonomika i matematicheskie metody, 30:4 (1994), 129–133
[5] Stiglits Dzh. Yu., Ekonomika gosudarstvennogo sektora, Infra-M, M., 1997, 718 pp.
[6] Florenzano M., del Mercato E. L., “Edgeworth and Lindahl-Foley equilibria of a general equilibrium model with private provision of pure public goods”, J. Public Economic Theory, 8:5 (2006), 713–740 | DOI
[7] Germeier Yu. B., Vatel I. A., “Igry s ierarkhicheskim vektorom interesov”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1974, no. 3, 54–69 | MR | Zbl
[8] Kukushkin N. S., Menshikov I. S., Menshikova O. R., Moiseev N. N., “Ustoichivye kompromissy v igrakh so strukturirovannymi funktsiyami vyigrysha”, Zhurn. vychisl. matematiki i mat. fiziki, 25:12 (1985), 1761–1776 | MR | Zbl
[9] Kukushkin N. S., “O suschestvovanii ustoichivykh iskhodov v teoretiko-igrovoi modeli ekonomiki s obschestvennymi blagami”, Dokl. AN SSR, 20:1 (1991), 25–28 | MR
[10] Kukushkin N. S., “A condition for existence of Nash equilibrium in games with public and private objectives”, Games and Economic Behavior, 7 (1994), 177–192 | DOI | MR | Zbl
[11] Kukushkin N. S., “On existence of stabe and efficient outcomes in games with public and private objectives”, Internat. J. Game Theory, 20:3 (1992), 295–303 | DOI | MR | Zbl