A mathematical model of the economics of railway cargo transportation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 44-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The transportation mathematical programming problem is modified for the analysis of the economics of railway cargo transportation in modern Russia. A variation principle in the form of a pair of mutually dual convex programming problems is constructed, and a competitive equilibrium in the railway transportation model is found from this principle. An approach to the analysis of imperfect competition, distribution of the intermediary's profit, and the role of communication constraints in a transportation network is proposed.
Keywords: public goods, cargo transportation model, Fenchel theorem, Legendre–Young–Fenchel transform, competitive equilibrium.
Mots-clés : communication constrains
@article{TIMM_2014_20_4_a4,
     author = {M. P. Vashchenko and Ya. S. Pronin and A. A. Shananin},
     title = {A mathematical model of the economics of railway cargo transportation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {44--59},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a4/}
}
TY  - JOUR
AU  - M. P. Vashchenko
AU  - Ya. S. Pronin
AU  - A. A. Shananin
TI  - A mathematical model of the economics of railway cargo transportation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 44
EP  - 59
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a4/
LA  - ru
ID  - TIMM_2014_20_4_a4
ER  - 
%0 Journal Article
%A M. P. Vashchenko
%A Ya. S. Pronin
%A A. A. Shananin
%T A mathematical model of the economics of railway cargo transportation
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 44-59
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a4/
%G ru
%F TIMM_2014_20_4_a4
M. P. Vashchenko; Ya. S. Pronin; A. A. Shananin. A mathematical model of the economics of railway cargo transportation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 44-59. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a4/

[1] Kantorovich L. V., Gavurin M. K., “Primenenie matematicheskikh metodov v voprosakh analiza gruzopotokov”, Problemy povysheniya effektivnosti raboty transporta, Izd-vo AN SSSR, M., 1949, 110–138

[2] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988, 264 pp. | MR

[3] Lindahl E., “Just taxation – A positive solution”, Classes in the Theory of Public Finance, eds. R. A. Musgrave, A. T. Peacok, Macmillian, New York, 1958, 168–176, ed. trans. (English) E. Henderson

[4] Bulavskii V. A., Kalashnikov V. V., “Metod odnoparametricheskoi progonki dlya issledovaniya sostoyaniya ravnovesiya”, Ekonomika i matematicheskie metody, 30:4 (1994), 129–133

[5] Stiglits Dzh. Yu., Ekonomika gosudarstvennogo sektora, Infra-M, M., 1997, 718 pp.

[6] Florenzano M., del Mercato E. L., “Edgeworth and Lindahl-Foley equilibria of a general equilibrium model with private provision of pure public goods”, J. Public Economic Theory, 8:5 (2006), 713–740 | DOI

[7] Germeier Yu. B., Vatel I. A., “Igry s ierarkhicheskim vektorom interesov”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1974, no. 3, 54–69 | MR | Zbl

[8] Kukushkin N. S., Menshikov I. S., Menshikova O. R., Moiseev N. N., “Ustoichivye kompromissy v igrakh so strukturirovannymi funktsiyami vyigrysha”, Zhurn. vychisl. matematiki i mat. fiziki, 25:12 (1985), 1761–1776 | MR | Zbl

[9] Kukushkin N. S., “O suschestvovanii ustoichivykh iskhodov v teoretiko-igrovoi modeli ekonomiki s obschestvennymi blagami”, Dokl. AN SSR, 20:1 (1991), 25–28 | MR

[10] Kukushkin N. S., “A condition for existence of Nash equilibrium in games with public and private objectives”, Games and Economic Behavior, 7 (1994), 177–192 | DOI | MR | Zbl

[11] Kukushkin N. S., “On existence of stabe and efficient outcomes in games with public and private objectives”, Internat. J. Game Theory, 20:3 (1992), 295–303 | DOI | MR | Zbl