Polynomial-time approximation scheme for a~Euclidean problem on a~cycle covering of a~graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 297-311

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Min-$k$-SCCP problem on a partition of a complete weighted digraph into $k$ vertex-disjoint cycles of minimum total weight. This problem is a natural generalization of the known Traveling salesman problem (TSP) and has a number of applications in operations research and data analysis. We show that the problem is strongly $NP$-hard and preserves intractability even in the geometric statement. For a metric special case of the problem, a new polynomial $2$-approximation algorithm is proposed. For the Euclidean Min-$2$-SCCP, a polynomial-time approximation scheme based on Arora's approach is built.
Keywords: $NP$-hard problem, polynomial-time approximation scheme (PTAS), traveling salesman problem (TSP), cycle covering of size $k$.
@article{TIMM_2014_20_4_a25,
     author = {M. Yu. Khachai and E. D. Neznakhina},
     title = {Polynomial-time approximation scheme for {a~Euclidean} problem on a~cycle covering of a~graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {297--311},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a25/}
}
TY  - JOUR
AU  - M. Yu. Khachai
AU  - E. D. Neznakhina
TI  - Polynomial-time approximation scheme for a~Euclidean problem on a~cycle covering of a~graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 297
EP  - 311
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a25/
LA  - ru
ID  - TIMM_2014_20_4_a25
ER  - 
%0 Journal Article
%A M. Yu. Khachai
%A E. D. Neznakhina
%T Polynomial-time approximation scheme for a~Euclidean problem on a~cycle covering of a~graph
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 297-311
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a25/
%G ru
%F TIMM_2014_20_4_a25
M. Yu. Khachai; E. D. Neznakhina. Polynomial-time approximation scheme for a~Euclidean problem on a~cycle covering of a~graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 297-311. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a25/