Estimates of reachable sets of control systems with nonlinearity and parametric perturbations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 287-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider techniques of estimating trajectory tubes of nonlinear control systems with uncertainty in the initial data and under the assumption of a quadratic nonlinearity of system state velocities over the states of the system. It is assumed that the uncertain initial states and the admissible controls are constrained by ellipsoidal restrictions. We study problems of sensitivity of reachable sets and of their ellipsoidal estimates to finite-dimensional parameters appearing in the constraints and in the uncertain dynamics of the control system. The results are based on algorithms and techniques of the ellipsoidal estimation theory and on the theory of differential inclusions.
Keywords: reachable set, differential inclusions, ellipsoidal calculus, parameter sensitivity.
@article{TIMM_2014_20_4_a24,
     author = {T. F. Filippova},
     title = {Estimates of reachable sets of control systems with nonlinearity and parametric perturbations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {287--296},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a24/}
}
TY  - JOUR
AU  - T. F. Filippova
TI  - Estimates of reachable sets of control systems with nonlinearity and parametric perturbations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 287
EP  - 296
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a24/
LA  - ru
ID  - TIMM_2014_20_4_a24
ER  - 
%0 Journal Article
%A T. F. Filippova
%T Estimates of reachable sets of control systems with nonlinearity and parametric perturbations
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 287-296
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a24/
%G ru
%F TIMM_2014_20_4_a24
T. F. Filippova. Estimates of reachable sets of control systems with nonlinearity and parametric perturbations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 287-296. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a24/

[1] Vzdornova O. G., Filippova T. F., “Zadachi impulsnogo upravleniya pri ellipsoidalnykh ogranicheniyakh: voprosy chuvstvitelnosti po parametram ogranichenii”, Avtomatika i telemekhanika, 2007, no. 11, 135–149 | MR | Zbl

[2] Darin A. N., Kurzhanskii A. B., “Metod vychisleniya invariantnykh mnozhestv lineinykh sistem bolshoi razmernosti pri neopredelennykh vozmuscheniyakh”, Dokl. AN, 446:6 (2012), 607–611 | MR

[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR | Zbl

[4] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[5] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[6] Kurzhanskii A. B., “Zadacha identifikatsii – teoriya garantirovannykh otsenok”, Avtomatika i telemekhanika, 1991, no. 4, 3–26 | MR | Zbl

[7] Kurzhanskii A. B., “O zadache upravleniya ellipsoidalnym dvizheniem”, Tr. MIAN, 277, 2012, 168–177 | MR

[8] Kurzhanskii A. B., Mesyats A. I., “Upravlenie ellipsoidalnymi traektoriyami. Teoriya i vychisleniya”, Zhurn. vychislit. matematiki i mat. fiziki, 54:3 (2014), 404–414 | DOI | MR

[9] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974, 331 pp.

[10] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986, 295 pp. | MR | Zbl

[11] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[12] Filippova T. F., “Postroenie mnogoznachnykh otsenok mnozhestv dostizhimosti nekotorykh nelineinykh dinamicheskikh sistem s impulsnym upravleniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 262–269

[13] Filippova T. F., “Differentsialnye uravneniya ellipsoidalnykh otsenok mnozhestv dostizhimosti nelineinoi dinamicheskoi upravlyaemoi sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 223–232

[14] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 320 pp. | MR | Zbl

[15] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990, 461 pp. | MR | Zbl

[16] Filippova T. F., “Sensitivity problems for impulsive differential inclusions”, Proc. of the 6th WSEAS International Conf. on Appl. Math. (Corfu Island, 2004), 1–6, [e-resource] | Zbl

[17] Filippova T. F., Berezina E. V., “On state estimation approaches for uncertain dynamical systems with quadratic nonlinearity: theory and computer simulations”, Proc. of the 6th LSSC International Conf. (Sozopol, Bulgaria, June 5–9, 2007), Revised Papers, Lecture Notes in Computer Science, 4818, Springer-Verlag, Berlin–Heidelberg, 2008, 326–333 | DOI | MR | Zbl

[18] Filippova T. F., “Trajectory tubes of nonlinear differential inclusions and state estimation problems”, J. Concr. Appl. Math., 8:1 (2010), 454–469 | MR | Zbl

[19] Goffin J.-L., Hoffman A. J., “On the relationship between the Hausdorff distance and matrix distances of ellipsoids”, Linear Algebra Appl., 52–53 (1983), 301–313 | DOI | MR | Zbl

[20] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR

[21] Kurzhanski A. B., Filippova T. F., “On the theory of trajectory tubes – a mathematical formalism for uncertain dynamics, viability and control”, Advances in Nonlinear Dynamics and Control: a Report from Russia, Progr. Systems Control Theory, 17, ed. A. B. Kurzhanski, Birkhauser, Boston, 1993, 122–188 | MR

[22] Kurzhanski A. B., Filippova T. F., “The mathematics of impulse control”, Proc. of the 20th International Symposium on Mathematical Theory of Networks and Systems (University of Melbourne, July 9–13, 2012), 1–4, [e-resource]

[23] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl

[24] Kurzhanski A. B., Varaiya P., “Impulsive inputs for feedback control and hybrid system modeling”, Advances in Dynamics and Control: Theory Methods and Applications, eds. S. Sivasundaram, J. V. Devi, F. E. Udwadia, I. Lasiecka, Cambridge Scientific Publishers, Cambridge, 2011, 305–326