@article{TIMM_2014_20_4_a24,
author = {T. F. Filippova},
title = {Estimates of reachable sets of control systems with nonlinearity and parametric perturbations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {287--296},
year = {2014},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a24/}
}
TY - JOUR AU - T. F. Filippova TI - Estimates of reachable sets of control systems with nonlinearity and parametric perturbations JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 287 EP - 296 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a24/ LA - ru ID - TIMM_2014_20_4_a24 ER -
T. F. Filippova. Estimates of reachable sets of control systems with nonlinearity and parametric perturbations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 287-296. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a24/
[1] Vzdornova O. G., Filippova T. F., “Zadachi impulsnogo upravleniya pri ellipsoidalnykh ogranicheniyakh: voprosy chuvstvitelnosti po parametram ogranichenii”, Avtomatika i telemekhanika, 2007, no. 11, 135–149 | MR | Zbl
[2] Darin A. N., Kurzhanskii A. B., “Metod vychisleniya invariantnykh mnozhestv lineinykh sistem bolshoi razmernosti pri neopredelennykh vozmuscheniyakh”, Dokl. AN, 446:6 (2012), 607–611 | MR
[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR | Zbl
[4] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[5] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl
[6] Kurzhanskii A. B., “Zadacha identifikatsii – teoriya garantirovannykh otsenok”, Avtomatika i telemekhanika, 1991, no. 4, 3–26 | MR | Zbl
[7] Kurzhanskii A. B., “O zadache upravleniya ellipsoidalnym dvizheniem”, Tr. MIAN, 277, 2012, 168–177 | MR
[8] Kurzhanskii A. B., Mesyats A. I., “Upravlenie ellipsoidalnymi traektoriyami. Teoriya i vychisleniya”, Zhurn. vychislit. matematiki i mat. fiziki, 54:3 (2014), 404–414 | DOI | MR
[9] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974, 331 pp.
[10] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986, 295 pp. | MR | Zbl
[11] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR
[12] Filippova T. F., “Postroenie mnogoznachnykh otsenok mnozhestv dostizhimosti nekotorykh nelineinykh dinamicheskikh sistem s impulsnym upravleniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 262–269
[13] Filippova T. F., “Differentsialnye uravneniya ellipsoidalnykh otsenok mnozhestv dostizhimosti nelineinoi dinamicheskoi upravlyaemoi sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 223–232
[14] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 320 pp. | MR | Zbl
[15] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990, 461 pp. | MR | Zbl
[16] Filippova T. F., “Sensitivity problems for impulsive differential inclusions”, Proc. of the 6th WSEAS International Conf. on Appl. Math. (Corfu Island, 2004), 1–6, [e-resource] | Zbl
[17] Filippova T. F., Berezina E. V., “On state estimation approaches for uncertain dynamical systems with quadratic nonlinearity: theory and computer simulations”, Proc. of the 6th LSSC International Conf. (Sozopol, Bulgaria, June 5–9, 2007), Revised Papers, Lecture Notes in Computer Science, 4818, Springer-Verlag, Berlin–Heidelberg, 2008, 326–333 | DOI | MR | Zbl
[18] Filippova T. F., “Trajectory tubes of nonlinear differential inclusions and state estimation problems”, J. Concr. Appl. Math., 8:1 (2010), 454–469 | MR | Zbl
[19] Goffin J.-L., Hoffman A. J., “On the relationship between the Hausdorff distance and matrix distances of ellipsoids”, Linear Algebra Appl., 52–53 (1983), 301–313 | DOI | MR | Zbl
[20] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR
[21] Kurzhanski A. B., Filippova T. F., “On the theory of trajectory tubes – a mathematical formalism for uncertain dynamics, viability and control”, Advances in Nonlinear Dynamics and Control: a Report from Russia, Progr. Systems Control Theory, 17, ed. A. B. Kurzhanski, Birkhauser, Boston, 1993, 122–188 | MR
[22] Kurzhanski A. B., Filippova T. F., “The mathematics of impulse control”, Proc. of the 20th International Symposium on Mathematical Theory of Networks and Systems (University of Melbourne, July 9–13, 2012), 1–4, [e-resource]
[23] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl
[24] Kurzhanski A. B., Varaiya P., “Impulsive inputs for feedback control and hybrid system modeling”, Advances in Dynamics and Control: Theory Methods and Applications, eds. S. Sivasundaram, J. V. Devi, F. E. Udwadia, I. Lasiecka, Cambridge Scientific Publishers, Cambridge, 2011, 305–326