Optimal trajectory construction by integration of Hamiltonian dynamics in models of economic growth under resource constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 258-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to an optimal control problem based on a model of optimization of natural resource productivity. The analysis of the problem is conducted with the use of Pontryagin's maximum principle adjusted to problems with infinite time horizon. Properties of the Hamiltonian function are investigated. Based on methods for resolving singularities, a special change of variables is suggested, which allows to simplify essentially the solution of the problem by means of analyzing steady states and corresponding Jacobian matrices of the Hamiltonian system. An important property of the change of variables is the possibility of an adequate and meaningful economic interpretation of the new variables. The existence of steady states of the Hamiltonian dynamics in the domain of transient control regime is studied, and a stable manifold is constructed for finding boundary conditions of integration of the Hamiltonian system in backward time. On the basis of the implemented analysis, an algorithm is proposed for constructing optimal trajectories under resource constraints. The analysis of the algorithm provides estimates for its convergence time and for its error with respect to the utility functional of the control problem based on the properties of the Hamiltonian system and constraints of the model. The asymptotic behavior of optimal trajectories is studied with the use of the implemented research. The operation of the algorithm is illustrated by graphical results.
Keywords: optimal control, models of economic growth, Pontryagin's maximum principle, integration of Hamiltonian dynamics.
@article{TIMM_2014_20_4_a22,
     author = {A. M. Taras'ev and A. A. Usova and W. Wang and O. V. Russkikh},
     title = {Optimal trajectory construction by integration of {Hamiltonian} dynamics in models of economic growth under resource constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--276},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a22/}
}
TY  - JOUR
AU  - A. M. Taras'ev
AU  - A. A. Usova
AU  - W. Wang
AU  - O. V. Russkikh
TI  - Optimal trajectory construction by integration of Hamiltonian dynamics in models of economic growth under resource constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 258
EP  - 276
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a22/
LA  - ru
ID  - TIMM_2014_20_4_a22
ER  - 
%0 Journal Article
%A A. M. Taras'ev
%A A. A. Usova
%A W. Wang
%A O. V. Russkikh
%T Optimal trajectory construction by integration of Hamiltonian dynamics in models of economic growth under resource constraints
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 258-276
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a22/
%G ru
%F TIMM_2014_20_4_a22
A. M. Taras'ev; A. A. Usova; W. Wang; O. V. Russkikh. Optimal trajectory construction by integration of Hamiltonian dynamics in models of economic growth under resource constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 258-276. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a22/

[1] Arrow K. J., “Application of control theory to economic growth”, Mathematics of the Decision Sciences, Part 2, eds. G. B. Dantzig, A. F. Veinott, American Mathematical Society, Providence, 1968, 85–119 | MR

[2] Shell K., “Applications of Pontryagin's maximum principle to economics”, Math. System Theory and Economics, Lect. Notes in Operations Research and Math. Economics, 1, eds. H. W. Kuhn, G. P. Szego, Springer-Verlag, Berlin, 1969, 241–292 | MR

[3] Solow R. M., Growth theory: An exposition, Oxford University Press, New York, 1970, 109 pp.

[4] Grossman G. M., Helpman E., Innovation and growth in the global economy, The MIT Press, Cambridge, 1991, 359 pp.

[5] Ayres R. U., Warr B., The Economic growth engine: How energy and work drive material prosperity, Edward Elgar Pub., Cheltenham, 2009, 448 pp.

[6] Tarasyev A., Zhu B., “Optimal proportions in growth trends of resource productivity”, Proc. of the 15th IFAC Workshop “Control Applications of Optimization”, CAO' 12, eds. L. Lambertini, A. Tarasyev, Rimini Center for Economic Analysis, Rimini, 2012 | DOI | MR

[7] Tarasyev A., Zhu B., “Optimal proportions in growth trends of resource productivity”, Green Growth and Sustainable Development, eds. J. Crespo-Cuaresma, T. Palokangas, A. Tarasyev, Springer, Heidelberg–New York, 2013, 49–66 | DOI | MR

[8] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, AIRIS PRESS, M., 2002, 553 pp.

[9] Sharp U. F., Aleksander G. Dzh., Beili D. V., Investitsii, INFRA-M, M., 1999, 1028 pp.

[10] Krushvits L., Finansirovanie i investitsii, Piter, SPb., 2000, 400 pp.

[11] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[12] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257, 2007, 3–271 | MR | Zbl

[13] Aseev S. M., Veliov, V. M., “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19:1–2 (2012), 43–63 | MR | Zbl

[14] Aseev S., Besov K., Kaniovski S., “The problem of optimal endogenous growth with exhaustible resources revisited”, Green Growth and Sustainable Development, Dyn. Model. Econom. Econ. Finance, 14, eds. J. Crespo Cuaresma, T. Palokangas, A. Tarasyev, Springer, Heidelberg–New York, 2013, 3–30 | MR

[15] Balder E. J., “An existance result for optimal economic growth problems”, J. Math. Anal. Appl., 95:1 (1983), 195–213 | DOI | MR | Zbl

[16] Grass D., Caulkins J., Feichtinger G., Tragler G., Behrens D., Optimal control of nonlinear processes, Springer-Verlag, Berlin, 2008, 572 pp. | MR

[17] Maurer H., Semmler W., “An optimal control model of oil discovery and extraction”, Appl. Math. Comput., 217:3 (2010), 1163–1169 | DOI | MR | Zbl

[18] Crespo Cuaresma J., Palokangas T., Tarasyev A. (eds.), Dynamic Systems, Economic Growth, and the Environment, Dynamic Modeling and Econometrics in Economics and Finance, 12, Springer, Heidelberg–New York, 2010, 289 pp. | DOI | Zbl

[19] Crespo Cuaresma J., Palokangas T., Tarasyev A. (eds.), Green Growth and Sustainable Development, Dynamic Modeling and Econometrics in Economics and Finance, 14, Springer, Heidelberg–New York–Dordrecht–London, 2013, 226 pp. | DOI | MR | Zbl

[20] Tarasyev A. M., Watanabe C., “Optimal dynamics of innovation in models of economic growth”, J. Optim. Theory Appl., 108:1 (2001), 175–203 | DOI | MR | Zbl

[21] Krasovskii A. A., Tarasev A. M., “Dinamicheskaya optimizatsiya inve-stitsii v modelyakh ekonomicheskogo rosta”, Avtomatika i telemekhanika, 2007, no. 10, 38–52 | MR | Zbl

[22] Krasovskii A. A., Tarasev A. M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262, 2008, 127–145 | MR | Zbl

[23] Krasovskii A. A., Tarasev A. M., “Postroenie nelineinykh regulyatorov v modelyakh ekonomicheskogo rosta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 127–138

[24] Tarasev A. M., Usova A. A., “Postroenie regulyatora dlya gamiltonovoi sistemy dvukhsektornoi modeli ekonomicheskogo rosta”, Tr. MIAN, 271, 2010, 278–298 | MR

[25] Tarasev A. M., Usova A. A., “Stabilizatsiya gamiltonovoi sistemy dlya postroeniya optimalnykh traektorii”, Tr. MIAN, 277, 2012, 257–274 | MR

[26] Tarasyev A., Usova A., “Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon”, Numer. Algebra Control Optim., 3:3 (2013), 389–406 | DOI | MR | Zbl

[27] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[28] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 390 pp. | MR | Zbl

[29] Kryazhimskii A. V., Osipov Yu. S., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[30] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[31] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya. I”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 7–140 | MR | Zbl

[32] Hartman Ph., Ordinary differential equations, J. Wiley and Sons, New York–London–Sydney, 1964, 628 pp. | MR | Zbl

[33] Reshmin S., Tarasyev A. M., Watanabe C., “A dynamic model of research and development investment”, J. Appl. Math. Mech., 65:3 (2001), 395–410 | DOI | MR | Zbl