Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 247-257
Voir la notice de l'article provenant de la source Math-Net.Ru
The Cauchy problem for the Hamilton–Jacobi equation, which appears in molecular biology for the Crow–Kimura model of molecular evolution, is considered. The state characteristics of the equation that start in a given initial manifold bounded in the state space stay in a strip bounded in the state variable and fill a part of this strip. The values attained by the impulse characteristics on a finite time interval are arbitrarily large in magnitude. We propose a construction of a smooth extension for a continuous minimax/viscosity solution of the problem to the part of the strip that is not covered by the characteristics starting in the initial manifold.
Keywords:
Hamilton–Jacobi–Bellman equations, method of characteristics, viscosity solutions, minimax solutions.
@article{TIMM_2014_20_4_a21,
author = {N. N. Subbotina and L. G. Shagalova},
title = {Construction of a~continuous minimax/viscosity solution of the {Hamilton--Jacobi--Bellman} equation with nonextendable characteristics},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {247--257},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a21/}
}
TY - JOUR AU - N. N. Subbotina AU - L. G. Shagalova TI - Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 247 EP - 257 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a21/ LA - ru ID - TIMM_2014_20_4_a21 ER -
%0 Journal Article %A N. N. Subbotina %A L. G. Shagalova %T Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics %J Trudy Instituta matematiki i mehaniki %D 2014 %P 247-257 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a21/ %G ru %F TIMM_2014_20_4_a21
N. N. Subbotina; L. G. Shagalova. Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 247-257. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a21/