Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 247-257

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for the Hamilton–Jacobi equation, which appears in molecular biology for the Crow–Kimura model of molecular evolution, is considered. The state characteristics of the equation that start in a given initial manifold bounded in the state space stay in a strip bounded in the state variable and fill a part of this strip. The values attained by the impulse characteristics on a finite time interval are arbitrarily large in magnitude. We propose a construction of a smooth extension for a continuous minimax/viscosity solution of the problem to the part of the strip that is not covered by the characteristics starting in the initial manifold.
Keywords: Hamilton–Jacobi–Bellman equations, method of characteristics, viscosity solutions, minimax solutions.
@article{TIMM_2014_20_4_a21,
     author = {N. N. Subbotina and L. G. Shagalova},
     title = {Construction of a~continuous minimax/viscosity solution of the {Hamilton--Jacobi--Bellman} equation with nonextendable characteristics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {247--257},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a21/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - L. G. Shagalova
TI  - Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 247
EP  - 257
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a21/
LA  - ru
ID  - TIMM_2014_20_4_a21
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A L. G. Shagalova
%T Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 247-257
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a21/
%G ru
%F TIMM_2014_20_4_a21
N. N. Subbotina; L. G. Shagalova. Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 247-257. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a21/