Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 29-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Properties of Lagrange multipliers from the Pontryagin maximum principle for problems with state constraints are investigated. Sufficient conditions for the continuity of the solution of the adjoint solution depending on how the extremal trajectory approaches the state constraint boundary are obtained. The proof uses the notion of closure by measure of a Lebesgue measurable function and the Caratheodory theorem.
Keywords: optimal control, maximum principle, state constraints.
@article{TIMM_2014_20_4_a2,
     author = {A. V. Arutyunov and D. Yu. Karamzin and F. L. Pereira},
     title = {Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {29--37},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - D. Yu. Karamzin
AU  - F. L. Pereira
TI  - Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 29
EP  - 37
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a2/
LA  - ru
ID  - TIMM_2014_20_4_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A D. Yu. Karamzin
%A F. L. Pereira
%T Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 29-37
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a2/
%G ru
%F TIMM_2014_20_4_a2
A. V. Arutyunov; D. Yu. Karamzin; F. L. Pereira. Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 29-37. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a2/

[1] Gamkrelidze R. V., “Optimalnye po bystrodeistviyu protsessy pri ogranichennykh fazovykh koordinatakh”, Dokl. AN SSSR, 125:3 (1959), 475–478 | MR | Zbl

[2] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 393 pp. | MR | Zbl

[3] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Dokl. AN SSSR, 149:4 (1963), 759–762

[4] Kurzhanskii A. B., Osipov Yu. S., “K zadache ob upravlenii s ogranichennymi fazovymi koordinatami”, Prikl. matematika i mekhanika, 32:2 (1968), 194–202 | MR | Zbl

[5] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Fizmatlit, M., 1977, 392 pp. | MR

[6] Kurzhanskii A. B., “Ob analiticheskom opisanii puchka vyzhivayuschikh traektorii differentsialnoi sistemy”, Dokl. AN SSSR, 287:5 (1986), 1047–1050 | MR

[7] Maurer H., “Differential stability in optimal control problems”, Appl. Math. Optim., 5:1 (1979), 283–295 | DOI | MR | Zbl

[8] Arutyunov A. V., Tynyanskii N. T., “O printsipe maksimuma v zadache s fazovymi ogranicheniyami”, Izv. AN SSSR. Tekhn. kibernetika, 1984, no. 4, 60–68 | MR | Zbl

[9] Arutyunov A. V., “K teorii printsipa maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, Dokl. AN SSSR, 304:1 (1989), 11–14 | MR | Zbl

[10] Afanasev A. P., Dikusar V. V., Milyutin A. A., Chukanov S. A., Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990, 320 pp. | MR | Zbl

[11] Arutyunov A. V., Aseev S. M., “State constraints in optimal control. The degeneracy phenomenon”, Systems Control Let., 26:4 (1995), 267–273 | MR | Zbl

[12] Ferreira M. M. A., Vinter R. B., “When is the maximum principle for state constrained problems nondegenerate?”, J. Math. Anal. Appl., 187:2 (1994), 438–467 | DOI | MR | Zbl

[13] Pereira F. L., “A maximum principle for impulsive control problems with state constraints”, Comput. Math. Appl., 19:2 (2000), 137–155 | MR | Zbl

[14] Arutyunov A. V., “Svoistva mnozhitelei Lagranzha v printsipe maksimuma Pontryagina dlya zadach optimalnogo upravleniya s fazovymi ogranicheniyami”, Differents. uravneniya, 48:12 (2012), 1621–1630 | MR | Zbl

[15] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “The maximum principle for optimal control problems with state constraints by R. V. Gamkrelidze: Revisited”, J. Optim. Theory Appl., 149 (2011), 474–493 | DOI | MR | Zbl

[16] Mordukhovich B., “Variational analysis and generalized differentiation”, v. I, Grundlehren Series, Fundamental Principles of Mathematical Sciences, 330, Basic theory, Springer-Verlag, Berlin, 2006, 584 pp. | MR