@article{TIMM_2014_20_4_a2,
author = {A. V. Arutyunov and D. Yu. Karamzin and F. L. Pereira},
title = {Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {29--37},
year = {2014},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a2/}
}
TY - JOUR AU - A. V. Arutyunov AU - D. Yu. Karamzin AU - F. L. Pereira TI - Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 29 EP - 37 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a2/ LA - ru ID - TIMM_2014_20_4_a2 ER -
%0 Journal Article %A A. V. Arutyunov %A D. Yu. Karamzin %A F. L. Pereira %T Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints %J Trudy Instituta matematiki i mehaniki %D 2014 %P 29-37 %V 20 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a2/ %G ru %F TIMM_2014_20_4_a2
A. V. Arutyunov; D. Yu. Karamzin; F. L. Pereira. Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 29-37. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a2/
[1] Gamkrelidze R. V., “Optimalnye po bystrodeistviyu protsessy pri ogranichennykh fazovykh koordinatakh”, Dokl. AN SSSR, 125:3 (1959), 475–478 | MR | Zbl
[2] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 393 pp. | MR | Zbl
[3] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Dokl. AN SSSR, 149:4 (1963), 759–762
[4] Kurzhanskii A. B., Osipov Yu. S., “K zadache ob upravlenii s ogranichennymi fazovymi koordinatami”, Prikl. matematika i mekhanika, 32:2 (1968), 194–202 | MR | Zbl
[5] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Fizmatlit, M., 1977, 392 pp. | MR
[6] Kurzhanskii A. B., “Ob analiticheskom opisanii puchka vyzhivayuschikh traektorii differentsialnoi sistemy”, Dokl. AN SSSR, 287:5 (1986), 1047–1050 | MR
[7] Maurer H., “Differential stability in optimal control problems”, Appl. Math. Optim., 5:1 (1979), 283–295 | DOI | MR | Zbl
[8] Arutyunov A. V., Tynyanskii N. T., “O printsipe maksimuma v zadache s fazovymi ogranicheniyami”, Izv. AN SSSR. Tekhn. kibernetika, 1984, no. 4, 60–68 | MR | Zbl
[9] Arutyunov A. V., “K teorii printsipa maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, Dokl. AN SSSR, 304:1 (1989), 11–14 | MR | Zbl
[10] Afanasev A. P., Dikusar V. V., Milyutin A. A., Chukanov S. A., Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990, 320 pp. | MR | Zbl
[11] Arutyunov A. V., Aseev S. M., “State constraints in optimal control. The degeneracy phenomenon”, Systems Control Let., 26:4 (1995), 267–273 | MR | Zbl
[12] Ferreira M. M. A., Vinter R. B., “When is the maximum principle for state constrained problems nondegenerate?”, J. Math. Anal. Appl., 187:2 (1994), 438–467 | DOI | MR | Zbl
[13] Pereira F. L., “A maximum principle for impulsive control problems with state constraints”, Comput. Math. Appl., 19:2 (2000), 137–155 | MR | Zbl
[14] Arutyunov A. V., “Svoistva mnozhitelei Lagranzha v printsipe maksimuma Pontryagina dlya zadach optimalnogo upravleniya s fazovymi ogranicheniyami”, Differents. uravneniya, 48:12 (2012), 1621–1630 | MR | Zbl
[15] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “The maximum principle for optimal control problems with state constraints by R. V. Gamkrelidze: Revisited”, J. Optim. Theory Appl., 149 (2011), 474–493 | DOI | MR | Zbl
[16] Mordukhovich B., “Variational analysis and generalized differentiation”, v. I, Grundlehren Series, Fundamental Principles of Mathematical Sciences, 330, Basic theory, Springer-Verlag, Berlin, 2006, 584 pp. | MR