Study of an optimal control problem related to the Solow control model
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 231-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the Solow model of optimal economic growth. The statement of the optimal control problem under consideration contains mixed constraints on the control. A special change of the control is used to reduce the problem to the study of a new controlled object with a usual geometric constraint. The reachable set of the original control system is found, an existence theorem for the optimal control is proved, and sufficient conditions for absence of singular regimes are obtained.
Keywords: Solow model, optimal control, mixed constraints on control, Pontryagin's maximum principle.
@article{TIMM_2014_20_4_a19,
     author = {M. S. Nikol'skii},
     title = {Study of an optimal control problem related to the {Solow} control model},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {231--237},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a19/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - Study of an optimal control problem related to the Solow control model
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 231
EP  - 237
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a19/
LA  - ru
ID  - TIMM_2014_20_4_a19
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T Study of an optimal control problem related to the Solow control model
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 231-237
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a19/
%G ru
%F TIMM_2014_20_4_a19
M. S. Nikol'skii. Study of an optimal control problem related to the Solow control model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 231-237. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a19/

[1] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, 2-e izd., ster., Airis-Press, M., 2002, 553 pp.

[2] Kolemaev V. A., Matematicheskaya ekonomika, 3-e izd., ster., Yuniti-Dana, M., 2005, 399 pp.

[3] Anisimov A. V., Grigorenko N. L., Lukyanova L. N., “Zadacha optimalnogo upravleniya dlya odnosektornoi modeli ekonomicheskogo rosta so smeshannymi ogranicheniyami”, Prikl. matematika i informatika, Tr. fak. MVK MGU im. M. V. Lomonosova, 44, MAKS Press, M., 2013, 5–21

[4] Pontryagin L. S. [i dr.], Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 393 pp. | MR | Zbl

[5] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[6] Koddington E., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958, 474 pp.

[7] Denisov A. M., Razgulin A. V., Obyknovennye differentsialnye uravneniya, Ucheb. .-metod. posobie, Ch. 2, MGU im. M. V. Lomonosova, fak. VMiK, M., 2009, 114 pp., [Elektr. resurs]

[8] Filippov A. F., “O nekotorykh voprosakh optimalnogo regulirovaniya”, Vest. MGU. Ser. matematika, mekhanika, astronomiya, fizika, khimiya, 2:1 (1959), 25–38

[9] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.