On a control algorithm for a linear system with measurements of a part of coordinates of the phase vector
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 218-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a feedback control problem for a system of ordinary differential equations in the case when only a part of coordinates of the phase vector are measured and propose a solution algorithm that is stable to perturbations. The algorithm is based on the combination of the theories of dynamical inversion and guaranteed control. It consists of two blocks: a block for the dynamical reconstruction of unmeasured coordinates and a control block.
Keywords: control, part of coordinates, linear systems.
@article{TIMM_2014_20_4_a18,
     author = {V. I. Maksimov},
     title = {On a~control algorithm for a~linear system with measurements of a~part of coordinates of the phase vector},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {218--230},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a18/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On a control algorithm for a linear system with measurements of a part of coordinates of the phase vector
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 218
EP  - 230
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a18/
LA  - ru
ID  - TIMM_2014_20_4_a18
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On a control algorithm for a linear system with measurements of a part of coordinates of the phase vector
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 218-230
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a18/
%G ru
%F TIMM_2014_20_4_a18
V. I. Maksimov. On a control algorithm for a linear system with measurements of a part of coordinates of the phase vector. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 218-230. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a18/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Fizmatlit, M., 1974, 458 pp. | MR

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[3] Kurzhanskii A. B., Tochilin P. A., “Zadacha slezheniya v predelakh intervala vremeni po dannym finitnykh nablyudatelei”, Differents. uravneniya, 49:5 (2013), 656–666 | MR | Zbl

[4] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 291 pp.

[5] Maksimov V. I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, Prikl. matematika i mekhanika, 65:3 (2001), 385–390 | MR

[6] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[7] Kappel F., Kryazhimskii N. N., Maksimov V. I., “Dinamicheskaya rekonstruktsiya sostoyanii i garantiruyuschee upravlenie sistemoi reaktsii-diffuzii”, Dokl. AN, 370:5 (2000), 599–601 | MR | Zbl

[8] Kryazhimskii A. V., Maksimov V. I., “Zadacha resursosberegayuschego slezheniya na beskonechnom promezhutke vremeni”, Differents. uravneniya, 47:7 (2011), 993–1002 | MR

[9] Blizorukova M. S., Maksimov V. I., “O odnom algoritme otslezhivaniya dvizheniya etalonnoi sistemy s posledeistviem pri izmerenii chasti koordinat”, Differents. uravneniya, 47:3 (2011), 415–426 | MR

[10] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 552 pp. | MR | Zbl