On the approximation of nonlinear conflict-controlled systems of neutral type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 204-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider approximations of systems of nonlinear neutral-type conflict-controlled equations in Hale's form by systems of high-order ordinary differential equations. A procedure is given for the mutual feedback tracking between the motion of the original neutral-type conflict-controlled system and the motion of the approximating system of ordinary differential equations. The proposed mutual tracking procedure makes it possible to use approximating systems of ordinary differential equations as finite-dimensional modeling guides for neutral-type systems.
Keywords: neutral systems, control theory, differential games.
@article{TIMM_2014_20_4_a17,
     author = {N. Yu. Lukoyanov and A. R. Plaksin},
     title = {On the approximation of nonlinear conflict-controlled systems of neutral type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {204--217},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a17/}
}
TY  - JOUR
AU  - N. Yu. Lukoyanov
AU  - A. R. Plaksin
TI  - On the approximation of nonlinear conflict-controlled systems of neutral type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 204
EP  - 217
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a17/
LA  - ru
ID  - TIMM_2014_20_4_a17
ER  - 
%0 Journal Article
%A N. Yu. Lukoyanov
%A A. R. Plaksin
%T On the approximation of nonlinear conflict-controlled systems of neutral type
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 204-217
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a17/
%G ru
%F TIMM_2014_20_4_a17
N. Yu. Lukoyanov; A. R. Plaksin. On the approximation of nonlinear conflict-controlled systems of neutral type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 204-217. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a17/

[1] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28:4 (1964), 716–724 | MR

[2] Repin Yu. M., “O priblizhennoi zamene sistem s zapazdyvaniem obyknovennymi dinamicheskimi sistemami”, Prikl. matematika i mekhanika, 29:2 (1965), 226–235 | MR | Zbl

[3] Salukvadze M. E., “K zadache sinteza optimalnogo regulyatora v lineinykh sistemakh s zapazdyvaniem, podverzhennykh postoyanno deistvuyuschim vozmuscheniyam”, Avtomatika i telemekhanika, 23:12 (1962), 1595–1601

[4] Kurzhanskii A. B., “K approksimatsii lineinykh differentsialnykh uravnenii s zapazdyvaniem”, Differents. uravneniya, 3 (1967), 2094–2107

[5] Banks H. T., Burns J. A., “Hereditary control problems: Numerical methods based on averaging approximations”, SIAM J. Control Optim., 16:2 (1978), 169–208 | DOI | MR | Zbl

[6] Banks H. T., Kappel F., “Spline approximations for functional differential equations”, J. Differential Equations, 34:3 (1979), 496–522 | DOI | MR | Zbl

[7] Kryazhimskii A. V., Maksimov V. I., “Approksimatsiya lineinykh differentsialno-raznostnykh igr”, Prikl. matematika i mekhanika, 42:2 (1978), 202–209 | MR

[8] Maksimov V. I., “Approksimatsiya nelineinykh differentsialno-raznostnykh igr”, Optim. upr. v dinam. sistemakh: sb. st., 30, IMM UrO RAN, 1979, 49–65 | MR

[9] Oparin N. P., “Ob approksimatsii sistem neitralnogo tipa”, Differents. uravneniya s otklonyayuschimisya argumentami, 11, 1979, 52–60 | MR

[10] Kunisch K., “Approximation schemes for nonlinear neutral optimal control systems”, J. Math. Anal. Appl., 82:1 (1981), 112–143 | DOI | MR | Zbl

[11] Matvii O. V., Cherevko I. M., “On approximation of systems of differential-difference equations of neutral type by systems of ordinary differential equations”, Nonlinear Oscillations, 10:3 (2007), 330–338 | DOI | MR | Zbl

[12] Fabiano R. H., “A semidiscrete approximation scheme for neutral delay-differential equations”, Int. J. Numer. Anal. Model., 10:3 (2013), 712–726 | MR | Zbl

[13] Krasovskii N. N., Kotelnikova A. N., “Stokhasticheskii povodyr dlya ob'ekta s posledeistviem v pozitsionnoi differentsialnoi igre”, Tr. Instituta matematiki i mekhaniki UrO RAN, 17, no. 2, 2011, 97–104

[14] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 458 pp. | MR | Zbl

[15] Lukoyanov N. Yu., Plaksin A. R., “Konechnomernye modeliruyuschie povodyri v sistemakh s zapazdyvaniem”, Tr. Instituta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 182–195

[16] Lukoyanov N. Yu., Plaksin A. R., “Ob approksimatsii konfliktno-upravlyaemykh funktsionalno-differentsialnykh sistem”, Vestn. Tambov. un-ta, 18:5-2, Estestvennye i tekhnicheskie nauki (2013), 2579–2582

[17] Plaksin A. R., “Ob approksimatsii konfliktno-upravlyaemykh sistem neitralnogo tipa”, XII Vseros. soveschanie po problemam upravleniya – VSPU-2014, Sb. dokl. (Moskva, 16–19 iyunya, 2014 g.), [Elektron. resurs], 2078–2088

[18] Hale J. K., Cruz. M. A., “Existence, uniqueness and continuous dependence for hereditary systems”, Ann. Mat. Pura Appl., 85:1 (1970), 63–81 | DOI | MR | Zbl

[19] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 225 pp. | MR

[20] Kurzhanskii A. B., “O suschestvovanii reshenii uravnenii s posledeistviem”, Differents. uravneniya, 6:10 (1970), 1800–1809

[21] Lukoyanov N. Yu., Funktsionalnye uravneniya Gamiltona–Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, Izd-vo UrFU, Ekaterinburg, 2011, 243 pp.

[22] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl