Multiobjective feedback control and its application to the construction of control rules for a cascade of hydroelectric power stations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 187-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method for the construction of control rules in a dynamic system in the case of several decision criteria is proposed. The choice of a rule is based on the approximation of the Edgeworth–Pareto hull (EPH) and the interactive visualization of the Pareto frontier in the form of decision maps, i.e., families of two-dimensional sections of the EPH shown at a researcher's request. The application of the proposed method to the construction of control rules for the Angara reservoir system is described.
Keywords: dynamic systems, control rules, multiobjective optimization, approximation of the Pareto frontier, Edgeworth–Pareto hull, management of a reservoir system.
@article{TIMM_2014_20_4_a16,
     author = {A. V. Lotov and A. I. Ryabikov},
     title = {Multiobjective feedback control and its application to the construction of control rules for a cascade of hydroelectric power stations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {187--203},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a16/}
}
TY  - JOUR
AU  - A. V. Lotov
AU  - A. I. Ryabikov
TI  - Multiobjective feedback control and its application to the construction of control rules for a cascade of hydroelectric power stations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 187
EP  - 203
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a16/
LA  - ru
ID  - TIMM_2014_20_4_a16
ER  - 
%0 Journal Article
%A A. V. Lotov
%A A. I. Ryabikov
%T Multiobjective feedback control and its application to the construction of control rules for a cascade of hydroelectric power stations
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 187-203
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a16/
%G ru
%F TIMM_2014_20_4_a16
A. V. Lotov; A. I. Ryabikov. Multiobjective feedback control and its application to the construction of control rules for a cascade of hydroelectric power stations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 187-203. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a16/

[1] Kurzhanskii A. B., Izbrannye trudy, Izd-vo MGU, M., 2009, 756 pp.

[2] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007, 255 pp.

[3] Larichev O. I., Teoriya i metody prinyatiya resheniya, Universitetskaya kniga, Logos, M., 2006, 392 pp.

[4] Larichev O. I., Ob'ektivnye modeli i sub'ektivnye resheniya, Nauka, M., 1987, 143 pp. | MR | Zbl

[5] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, MAKS Press, M., 2008, 197 pp.

[6] Larichev O., “Cognitive validity in design of decision-aiding techniques”, J. Multi-Criteria Decision Analysis, 1:3 (1992), 127–138 | DOI | Zbl

[7] Lotov A. V. [et al.], “Water resource conflict resolution based on interactive tradeoffs display”, Rehabilitation of Degraded Rivers: Challenges, Issues and Experiences, ed. D. P. Loucks, Kluwer Academic Publishers, Boston, 1998, 446–470

[8] Dietrich J., Schumann A. H., Lotov A. V., “Workflow oriented participatory decision support for integrated river basin planning”, Topics on System Analysis and Integrated Water Resource Management, eds. A. Castelletti, R. Soncini Sessa, Elsevier, New York, 2007, 207–221 | DOI

[9] Efremov R. V., Lotov A. V., “Multi-criteria remote asynchronous group decision screening: an experimental study”, Group Decisions and Negotiations, 23:1 (2014), 31–48 | DOI

[10] Lotov A. V. [i dr.], Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997, 239 pp.

[11] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer Academic Publishers, Boston, 2004, 310 pp. | MR | Zbl

[12] Pryazhinskaya V. G., Yaroshevskii D. M., Levit-Gurevich L. K., Kompyuternoe modelirovanie v upravlenii vodnymi resursami, Fizmatlit, M., 2002, 494 pp.

[13] Khranovich I. L., Upravlenie vodnymi resursami. Potokovye modeli, Nauchnyi mir, M., 2001, 393 pp.

[14] Loucks D. P, van Beek E., Water resources systems planning and management. An introduction to methods, models and applications, UNESCO Publishing, Paris, 2005, 680 pp.

[15] Castelletti A., Pianosi F., Soncini-Sessa R., “Water reservoir control under economic, social and environmental constraints”, Automatica, 44 (2008), 1595–1607 | DOI | MR | Zbl

[16] Asarin A. E., Bestuzheva K. N., Vodnoenergeticheskie raschety, Energoatomizdat, M., 1986, 224 pp.

[17] Reznikovskii A. Sh., Aleksandrovskii A. Yu., Aturin V. V. [i dr.], Gidrologicheskie osnovy gidroenergetiki, Energiya, M., 1979, 232 pp.

[18] Kritskii S. N., Menkel M. F., Gidrologicheskie osnovy upravleniya vodokhozyaistvennymi sistemami, Nauka, M., 1982, 271 pp.

[19] Agasandyan G. A., “Algoritmy postroeniya dispetcherskikh pravil upravleniya dlya kaskadov vodokhranilisch”, Vodnye resursy, 1985, no. 5, 34–46

[20] Bolgov M. V., Sarmanov I. O., Sarmanov O. V., Markovskie protsessy v gidrologii, Izd-vo RAN, M., 2009, 211 pp.

[21] Metodicheskie ukazaniya po razrabotke pravil ispolzovaniya vodokhranilisch, Utv. prikazom Minprirody Rossii ot 26 yanvarya 2011 g., No 17, URL: http://img.rg.ru/pril/76/46/95/20655.doc

[22] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjective optimization, Mathematics in Science and Engineering, 176, Acad. Press, Orlando, 1985, 296 pp. | MR | Zbl

[23] Lotov A. V., Kamenev G. K., Berezkin V. E., “Approksimatsiya i vizualizatsiya paretovoi granitsy dlya nevypuklykh mnogokriterialnykh zadach”, Dokl. AN, 386:6 (2002), 738–741 | MR | Zbl

[24] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi paretovoi granitsy”, Zhurn. vychisl. matematiki i mat. fiziki, 46:11 (2006), 2009–2023 | MR

[25] Lotov A., Berezkin V., Kamenev G., Miettinen K., “Optimal control of cooling process in continuous casting of steel using a visualization-based multi-criteria approach”, Appl. Math. Modelling, 29:7 (2005), 653–672 | Zbl

[26] Sobol I. M., Statnikov R. B., Vybor optimalnykh parametrov v zadachakh so mnogimi kriteriyami, Drofa, M., 2006, 182 pp.

[27] Krasnoschekov P. S., Morozov V. V., Popov N. M., Optimizatsiya v avtomatizirovannom proektirovanii, MAKS Press, M., 2008, 323 pp.

[28] Haimes Y. Y. [et al.], Hierarchical multiobjective analysis of large-scale systems, Hemisphere Publishing, New York, 1990, 323 pp. | MR

[29] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN, 291:1 (1986), 25–29 | MR | Zbl

[30] Evtushenko Yu. G., Posypkin M. A., “Primenenie metoda neravnomernykh pokrytii dlya globalnoi optimizatsii chastichno tselochislennykh nelineinykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 51:8 (2011), 1376–1389 | MR | Zbl

[31] Scholz D., Deterministic global optimization, Springer, New York etc., 2010, 153 pp. | MR

[32] Deb K., Multi-objective optimization using evolutionary algorithms, Wiley, Chichester, UK, 2001, 515 pp. | MR | Zbl

[33] Deb K., “Introduction to evolutionary multiobjective optimization”, Multiobjective Optimization. Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, 5252, eds. J. Branke, K. Deb, K. Miettinen, R. Slowinski, Springer, Berlin–Heidelberg, 2008, 59–96 | DOI

[34] Lotov A. V., Ryabikov A. I., Buber A. L., “Vizualizatsiya granitsy Pareto pri razrabotke pravil upravleniya GES”, Iskusstvennyi intellekt i prinyatie reshenii, 2013, no. 1, 70–83

[35] Ryabikov A. I., “O metode erzats-funktsii dlya minimizatsii konechnoznachnoi funktsii na kompaktnom mnozhestve”, Zhurn. vychisl. matematiki i mat. fiziki, 54:2 (2014), 195–207 | DOI | MR

[36] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR | Zbl

[37] Berezkin V. E., Kamenev G. K., “Issledovanie skhodimosti dvukhfaznykh metodov approksimatsii obolochki Edzhvorta–Pareto v nelineinykh zadachakh mnogokriterialnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 52:6 (2012), 990–998 | MR | Zbl

[38] Kamenev G. K., “Issledovanie skhodimosti i effektivnosti dvukhfaznykh metodov approksimatsii obolochki Edzhvorta–Pareto”, Zhurn. vychisl. matematiki i mat. fiziki, 53:4 (2013), 507–519 | DOI | MR | Zbl

[39] Berezkin V. E., Lotov A. V., Lotova E. A., “Izuchenie gibridnykh metodov approksimatsii obolochki Edzhvorta–Pareto v nelineinykh zadachakh mnogokriterialnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 54:6 (2014), 905–918 | DOI | MR