On the polyhedral method of solving problems of control strategy synthesis
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 153-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider control synthesis problems for linear and bilinear differential systems. Two types of problems are studied: when controls are additive and when they enter the matrix of the system. For both types we consider cases without uncertainty and cases with uncertainty, including additive parallelotope-valued uncertainties and interval uncertainties in the coefficients of the system. We continue to develop the methods of “polyhedral” synthesis of controls with the use of polyhedral (parallelotope-valued) solvability tubes. We propose new control strategies, which can be calculated by explicit formulas based on the mentioned tubes, and consider similar synthesis problems for multistep systems.
Keywords: control synthesis, solvability tubes, polyhedral estimates, interval analysis.
Mots-clés : parallelotopes
@article{TIMM_2014_20_4_a13,
     author = {E. K. Kostousova},
     title = {On the polyhedral method of solving problems of control strategy synthesis},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--167},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a13/}
}
TY  - JOUR
AU  - E. K. Kostousova
TI  - On the polyhedral method of solving problems of control strategy synthesis
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 153
EP  - 167
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a13/
LA  - ru
ID  - TIMM_2014_20_4_a13
ER  - 
%0 Journal Article
%A E. K. Kostousova
%T On the polyhedral method of solving problems of control strategy synthesis
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 153-167
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a13/
%G ru
%F TIMM_2014_20_4_a13
E. K. Kostousova. On the polyhedral method of solving problems of control strategy synthesis. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 153-167. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a13/

[1] Ananevskii I. M., Anokhin N. V., Ovseevich A. I., “Sintez ogranichennogo upravleniya lineinymi dinamicheskimi sistemami s pomoschyu obschei funktsii Lyapunova”, Dokl. AN, 434:3 (2010), 319–323 | MR | Zbl

[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987, 600 pp. | MR | Zbl

[3] Vazhentsev A. Yu., “O vnutrennikh ellipsoidalnykh approksimatsiyakh dlya zadach sinteza upravleniya pri ogranichennykh koordinatakh”, Izv. RAN. Teoriya i sistemy upravleniya, 2000, no. 3, 70–77 | MR

[4] Vasilev F. P., Metody optimizatsii, v 2 kn., Kn. 1, MTsNMO, M., 2011, 620 pp.

[5] Gusev M. I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51

[6] Darin A. N., Kurzhanskii A. B., “Parallelnyi algoritm vychisleniya invariantnykh mnozhestv lineinykh sistem bolshoi razmernosti pri neopredelennykh vozmuscheniyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 53:1 (2013), 47–57 | DOI | MR | Zbl

[7] Komarov V. A., “Sintez ogranichennykh upravlenii dlya lineinykh neavtonomnykh sistem”, Avtomatika i telemekhanika, 1984, no. 10, 44–50 | MR | Zbl

[8] Kostousova E. K., “O poliedralnykh otsenkakh v zadachakh sinteza strategii upravleniya v lineinykh mnogoshagovykh sistemakh”, Algoritmy i programmnye sredstva parallelnykh vychislenii: sb. nauch. tr., 9, Izd-vo UrO RAN, Ekaterinburg, 2006, 84–105 | MR

[9] Kostousova E. K., “O poliedralnykh otsenkakh mnozhestv dostizhimosti differentsialnykh sistem s bilineinoi neopredelennostyu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 195–210

[10] Kostousova E. K., Kurzhanskii A. B., “Garantirovannye otsenki tochnosti vychislenii v zadachakh upravleniya i otsenivaniya”, Vychisl. tekhnologii, 2:1 (1997), 19–27 | MR

[11] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[12] Kuntsevich V. M., Kurzhanskii A. B., “Oblasti dostizhimosti lineinykh i nekotorykh klassov nelineinykh diskretnykh sistem i upravleniya imi”, Probl. upravleniya i informatiki, 2010, no. 1, 5–21 | MR

[13] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[14] Kurzhanskii A. B., Melnikov N. B., “O zadache sinteza upravlenii: alternirovannyi integral Pontryagina i uravnenie Gamiltona–Yakobi”, Mat. sb., 191:6 (2000), 69–100 | DOI | MR | Zbl

[15] Kurzhanskii A. B., Nikonov O. I., “K zadache sinteza strategii upravleniya. Evolyutsionnye uravneniya i mnogoznachnoe integrirovanie”, Dokl. AN SSSR, 311:4 (1990), 788–793 | MR

[16] Lisin D. V., Filippova T. F., “Ob otsenivanii traektornykh trubok differentsialnykh vklyuchenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6, no. 2, 2000, 435–445 | MR | Zbl

[17] Mazurenko S. S., “Differentsialnoe uravnenie na kalibrovochnuyu funktsiyu Minkovskogo zvezdnogo mnozhestva dostizhimosti differentsialnogo vklyucheniya”, Dokl. AN, 445:2 (2012), 139–142 | MR | Zbl

[18] Polyak B. T., Scherbakov P. S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002, 303 pp.

[19] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[20] Filippova T. F., Matviichuk O. G., “Algoritmy otsenivaniya mnozhestv dostizhimosti impulsnykh upravlyaemykh sistem s ellipsoidalnymi fazovymi ogranicheniyami”, Avtomatika i telemekhanika, 2011, no. 9, 127–141 | MR | Zbl

[21] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988, 319 pp. | MR | Zbl

[22] Ananiev B. I., “Some problems of observations' control”, AIP Conf. Proc., 1404 (2011), 235–241 | DOI

[23] Baier R., Lempio F., “Computing Aumann's integral”, Modeling Techniques for Uncertain Systems, Proc. Conf. (Sopron, 1992), Progr. Systems Control Theory, 18, eds. A. B. Kurzhanski, V. M. Veliov, Birkhäuser, Boston, 1994, 71–92 | MR | Zbl

[24] Kostousova E. K., “Control synthesis via parallelotopes: optimization and parallel computations”, Optimiz. Methods Software, 14:4 (2001), 267–310 | DOI | MR | Zbl

[25] Kostousova E. K., “On tight polyhedral estimates for reachable sets of linear differential systems”, AIP Conf. Proc., 1493 (2012), 579–586 | DOI

[26] Kurzhanski A. B., Vályi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl

[27] Kurzhanski A. B., Varaiya P., “On ellipsoidal techniques for reachability analysis. Part I: External approximations”, Optimiz. Methods Software, 17:2 (2002), 177–206 | DOI | MR | Zbl

[28] Taras'yev A. M., Uspenskiy A. A., Ushakov V. N., “Approximation shemas and finite-difference operators for constructing generalized solutions of Hamilton–Jacobi equations”, J. Comput. Systems Sci. Internat., 33:6 (1995), 127–139 | MR

[29] Veliov V. M., “Second order discrete approximations to strongly convex differential inclusions”, Systems Control Letters, 13:3 (1989), 263–269 | DOI | MR | Zbl