Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 143-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This is the first in a series of papers whose results imply the validity of a strong version of the Sims conjecture on finite primitive permutation groups from the authors' article “Stabilizers of graph's vertices and a strengthened version of the Sims conjecture”, Dokl. Math. 59(1), 113–115 (1999). In this paper, the case of non almost simple primitive groups and the case of primitive groups with alternating socle are considered.
Keywords: finite primitive permutation group, stabilizer of point, graph, the Sims conjecture.
@article{TIMM_2014_20_4_a12,
     author = {A. S. Kondrat'ev and V. I. Trofimov},
     title = {Stabilizers of vertices of graphs with primitive automorphism groups and a~strong version of the {Sims} {conjecture.~I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {143--152},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a12/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - V. I. Trofimov
TI  - Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 143
EP  - 152
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a12/
LA  - ru
ID  - TIMM_2014_20_4_a12
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A V. I. Trofimov
%T Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. I
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 143-152
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a12/
%G ru
%F TIMM_2014_20_4_a12
A. S. Kondrat'ev; V. I. Trofimov. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 143-152. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a12/

[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972, 334 pp. | MR

[2] Kondratev A. S., Trofimov V. I., “Stabilizatory vershin grafov i usilennaya versiya giptezy Simsa”, Dokl. AN, 364:6 (1999), 741–743 | MR | Zbl

[3] Fomin A. N., “Svoistva podorbit konechnykh primitivnykh grupp podstanovok”, Teoretiko-gruppovye issledovaniya, Sb. tr., Izd-vo UrO RAN, Sverdlovsk, 1990, 87–94

[4] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[5] Conway J. H. [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[6] Azad H., Barry M., Seitz G. M., “On the structure of parabolic subgroups”, Commun. Algebra, 18:2 (1990), 551–562 | DOI | MR | Zbl

[7] Dixon J. D., Mortimer B., Permutation groups, Springer-Verlag, New York, 1996, 346 pp. | MR | Zbl

[8] Knapp W., “On the point stabilizer in a primitive permutation group”, Math. Z., 133:2 (1973), 137–168 | DOI | MR | Zbl

[9] Liebeck M. W., Praeger Ch. E., Saxl J., “On the O'Nan–Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Ser. A, 44:3 (1988), 389–396 | DOI | MR | Zbl

[10] Cameron P. J., Praeger Ch. E., Saxl J., Seitz G. M., “On the Sims conjecture and distance transitive graphs”, Bull. London Math. Soc., 15:5 (1983), 499–506 | DOI | MR | Zbl

[11] Thompson J. G., “Bounds for the orders of of maximal subgroups”, J. Algebra, 14:1 (1970), 135–138 | DOI | MR | Zbl

[12] Wielandt H., Subnormal subgroups and permutation groups, Lecture Notes, Ohio State Univ., Columbus, 1971, 35 pp.