Stable bridge construction in games with simple motions in the plane
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 128-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is known that the solvability set (the maximal stable bridge) in a zero-sum differential game with simple motions, fixed terminal time, geometric constraints on the controls of the first and second players, and convex terminal set can be constructed by means of a program absorption operator. In this case, a backward procedure for the construction of $t$-sections of the solvability set does not need any additional partition times. We establish the same property for a game with simple motions, polygonal terminal set (which is generally nonconvex), and polygonal constraints on the players's controls in the plane. In the particular case of a convex terminal set, the operator used in the article coincides with the program absorption operator.
Keywords: differential games with simple motions in the plane, solvability set, backward procedure.
@article{TIMM_2014_20_4_a11,
     author = {L. V. Kamneva and V. S. Patsko},
     title = {Stable bridge construction in games with simple motions in the plane},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {128--142},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a11/}
}
TY  - JOUR
AU  - L. V. Kamneva
AU  - V. S. Patsko
TI  - Stable bridge construction in games with simple motions in the plane
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 128
EP  - 142
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a11/
LA  - ru
ID  - TIMM_2014_20_4_a11
ER  - 
%0 Journal Article
%A L. V. Kamneva
%A V. S. Patsko
%T Stable bridge construction in games with simple motions in the plane
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 128-142
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a11/
%G ru
%F TIMM_2014_20_4_a11
L. V. Kamneva; V. S. Patsko. Stable bridge construction in games with simple motions in the plane. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 128-142. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a11/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967, 480 pp. | MR

[2] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: perspektivy dinamicheskoi optimizatsii, In-t kompyuter. issled., M.–Izhevsk, 2003, 336 pp.

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[4] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York etc., 1988, 517 pp. | MR

[5] Pshenichnyi B. N., Sagaidak M. I., “O differentsialnykh igrakh s fiksirovannym vremenem”, Kibernetika, 1970, no. 2, 54–63 | MR | Zbl

[6] Kamneva L. V., Patsko V. S., “Polugruppovoe svoistvo operatora programmnogo pogloscheniya v igrakh s prostymi dvizheniyami na ploskosti”, Differents. uravneniya, 49:11 (2013), 1399–1409 | MR | Zbl