Solution asymptotics in a problem of optimal boundary control of a flow through a part of the boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 116-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a problem of optimal control through a part of the boundary of solutions to an elliptic equation in a bounded domain with smooth boundary with a small parameter at the Laplace operator and integral constraints on the control. A complete asymptotic expansion of the solution to this problems in powers of the small parameter is constructed.
Keywords: singular problems, optimal control, boundary value problems for systems of partial differential equations, asymptotic expansions.
@article{TIMM_2014_20_4_a10,
     author = {A. R. Danilin},
     title = {Solution asymptotics in a~problem of optimal boundary control of a~flow through a~part of the boundary},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {116--127},
     year = {2014},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a10/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - Solution asymptotics in a problem of optimal boundary control of a flow through a part of the boundary
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 116
EP  - 127
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a10/
LA  - ru
ID  - TIMM_2014_20_4_a10
ER  - 
%0 Journal Article
%A A. R. Danilin
%T Solution asymptotics in a problem of optimal boundary control of a flow through a part of the boundary
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 116-127
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a10/
%G ru
%F TIMM_2014_20_4_a10
A. R. Danilin. Solution asymptotics in a problem of optimal boundary control of a flow through a part of the boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 116-127. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a10/

[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[2] Danilin A. R., Zorin A. P., “Asimptotika resheniya zadachi optimalnogo granichnogo upravleniya v ogranichennoi oblasti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 75–82

[3] Danilin A. R., “Asimptotika ogranichennykh upravlenii dlya singulyarnoi ellipticheskoi zadachi v oblasti s maloi polostyu”, Mat. sb., 189:11 (1998), 27—60 | DOI | MR | Zbl

[4] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | DOI | MR | Zbl

[5] Kapustyan V. E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy, 1992, no. 2, Matematika, estestvoznanie, tekhnicheskie nauki, 70–74 | MR

[6] Kapustyan V. E., “Optimalnye bisingulyarnye ellipticheskie zadachi s ogranichennym upravleniem”, Dokl. AN Ukrainy, 1993, no. 6, 81—85 | MR

[7] Danilin A. R., Zorin A. P., “Asimptotika resheniya zadachi optimalnogo granichnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 95–107

[8] Danilin A. R., “Optimalnoe granichnoe upravlenie v oblasti s maloi polostyu”, Ufim. mat. zhurn., 4:2 (2012), 87–100

[9] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR | Zbl

[10] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[11] Vishik M. I., Lyusternik L. A., “Regulyaronoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl

[12] Ilin A. M., “Pogranichnyi sloi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VINITI AN SSSR, M., 1988, 175–213 | MR | Zbl