@article{TIMM_2014_20_4_a1,
author = {B. I. Anan'ev},
title = {On the estimation of backward stochastic differential equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {17--28},
year = {2014},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a1/}
}
B. I. Anan'ev. On the estimation of backward stochastic differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 17-28. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a1/
[1] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 306 pp. | MR | Zbl
[2] Kurzhanskii A. B., “Printsip sravneniya dlya uravnenii tipa Gamiltona–Yakobi v teorii upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 173–183 | MR | Zbl
[3] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth analysis and control theory, Springer-Verlag, New York, 1998, 276 pp. | MR | Zbl
[4] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 399 pp.
[5] Kallianpur G., Stokhasticheskaya teoriya filtratsii, Nauka, M., 1987, 318 pp. | MR | Zbl
[6] Yong J., Zhou X., Stochastic controls: Hamiltonian systems and HJB equations, Springer-Verlag, New York, 1999, 438 pp. | MR
[7] Bismut J. M., “An introductory approach to duality in optimal stochastic control”, SIAM Rev., 20 (1978), 62–78 | DOI | MR | Zbl
[8] Ananev B. I., “Otsenivanie sostoyanii obratnykh stokhasticheskikh differentsialnykh uravnenii so statisticheski neopredelennymi pomekhami”, XII Vserossiiskoe soveschanie po problemam upravleniya – VSPU-2014, Sb. dokl. (Moskva, 16–19 iyunya, 2014 g.), 2604–2611, [Elektron. resurs]
[9] Ananyev B. I., “State estimation for linear stochastic differential equations with uncertain disturbances via BSDE approach”, AIP Conference Proceedings, 1487 (2012), 143–150 | DOI
[10] Ananev B. I., “Minimaksnaya kvadratichnaya zadacha korrektsii dvizheniya”, Prikl. matematika i mekhanika, 41:3 (1977), 436–445 | MR
[11] Jin Ma, Protter P., Yong J. M., “Solving forward-backward stochastic differential equations explicitly – a four step scheme”, Probab. Theory Related Fields, 98:3 (1994), 339–359 | DOI | MR | Zbl
[12] Bouchard B., Touzi N., “Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations”, Stochastic Process. Appl., 111 (2004), 175–206 | DOI | MR | Zbl