On the estimation of backward stochastic differential equations
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 17-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider an estimation problem for a backward stochastic differential equation in the presence of statistically indeterminate noise. We use the approach of the theory of guaranteed estimation and assume that the statistically indeterminate noise, as well as some processes entering the equation, is subject to integral constraints. In the linear case, we prove a theorem on the approximation of random information sets by deterministic sets as the diffusion coefficient vanishes. Examples are considered.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
backward stochastic differential equation, Brownian motion, random information set.
                    
                  
                
                
                @article{TIMM_2014_20_4_a1,
     author = {B. I. Anan'ev},
     title = {On the estimation of backward stochastic differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {17--28},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a1/}
}
                      
                      
                    B. I. Anan'ev. On the estimation of backward stochastic differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 17-28. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a1/
