Solvability sets in a pursuit game with two pursuers and one evader
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 148-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a differential game with two pursuers and one evader. The dynamics of each object is described by a linear stationary system in general form with a scalar control. The payoff is the minimum of two one-dimensional misses between the first pursuer and the evader and between the second pursuer and the evader. Misses are counted at fixed times. An algorithm for constructing level sets of the value function (solvability sets of the game problem) is described. For the case of “strong” pursuers we give methods for the construction of optimal strategies. Numerical results are presented. This zero-sum game can be useful for studying the concluding stage of a space pursuit involving two pursuing objects and one evading object.
Keywords: differential games, linear dynamics, value function, optimal feedback control.
@article{TIMM_2014_20_3_a9,
     author = {S. S. Kumkov and S. Le Menec and V. S. Patsko},
     title = {Solvability sets in a~pursuit game with two pursuers and one evader},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {148--165},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a9/}
}
TY  - JOUR
AU  - S. S. Kumkov
AU  - S. Le Menec
AU  - V. S. Patsko
TI  - Solvability sets in a pursuit game with two pursuers and one evader
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 148
EP  - 165
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a9/
LA  - ru
ID  - TIMM_2014_20_3_a9
ER  - 
%0 Journal Article
%A S. S. Kumkov
%A S. Le Menec
%A V. S. Patsko
%T Solvability sets in a pursuit game with two pursuers and one evader
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 148-165
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a9/
%G ru
%F TIMM_2014_20_3_a9
S. S. Kumkov; S. Le Menec; V. S. Patsko. Solvability sets in a pursuit game with two pursuers and one evader. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 148-165. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a9/

[1] Le Ménec S., “Linear differential game with two pursuers and one evader”, Advances in dynamic games, Ann. Internat. Soc. Dynam. Games, 11, Birkhäuser, Boston, 2011, 209–226 | MR | Zbl

[2] Ganebny S. A., Kumkov S. S., Le Ménec S., Patsko V. S., “Model problem in a line with two pursuers and one evader”, Dyn. Games Appl., 2:2 (2012), 228–257 | DOI | MR | Zbl

[3] Ganebny S. A., Kumkov S. S., Le Ménec S., Patsko V. S., “Study of linear game with two pursuers and one evader: Different strength of pursuers”, Advances in dynamic games, Ann. Internat. Soc. Dynam. Games, 12, Birkhäuser, Boston, 2012, 269–292 | MR

[4] Shinar J., Glizer V. Y., Turetsky V., “The effect of pursuer dynamics on the value of linear pursuit-evasion games with bounded controls”, Advances in dynamic games, Ann. Internat. Soc. Dynam. Games, 13, Birkhäuser, Boston, 2013, 313–350 | MR

[5] Shima T., “Capture conditions in a pursuit-evasion game between players with biproper dynamics”, J. Optim. Theory Appl., 126:3 (2005), 503–528 | DOI | MR | Zbl

[6] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[7] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.

[8] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp. | MR | Zbl

[9] Shinar J., Medinah M., Biton M., “Singular surfaces in a linear pursuit-evasion game with elliptical vectograms”, J. Optim. Theory Appl., 43:3 (1984), 431–456 | DOI | MR | Zbl

[10] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[11] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR

[12] Isakova E. A., Logunova G. V., Patsko V. S., “Postroenie stabilnykh mostov v lineinoi differentsialnoi igre s fiksirovannym momentom okonchaniya”, Algoritmy i programmy resheniya lineinykh differentsialnykh igr, eds. A. I. Subbotin, V. S. Patsko, In-t matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1984, 127–158

[13] Patsko V. S., Turova V. L., “Level sets of the value function in differential games with the homicidal chauffeur dynamics”, Int. Game Theory Rev., 3:1 (2001), 67–112 | DOI | MR | Zbl

[14] Kumkov S. S., Patsko V. S., Shinar J., “On level sets with “narrow” throats in linear differential games”, Int. Game Theory Rev., 7:3 (2005), 285–312 | DOI | MR

[15] Shima T., Shinar J., “Time-varying linear pursuit-evasion game models with bounded controls”, J. Guid. Contr. Dyn., 25:3 (2002), 425–432 | DOI | MR

[16] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 285 pp. | MR