Hamilton–Jacobi equations in evolutionary games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 114-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Advanced methods of the theory of optimal control and generalized minimax solutions of Hamilton–Jacobi equations are applied to a nonzero sum game between two large groups of agents in the framework of economic and biological evolutionary models. Random contacts of agents from different groups happen according to a control dynamic process which can be interpreted as Kolmogorov's differential equations. Coefficients of equations are not fixed a priori and can be chosen as control parameters on the feedback principle. Payoffs of coalitions are determined by the limit functionals on infinite horizon. The notion of a dynamical Nash equilibrium is considered in the class of control feedbacks. A solution is proposed basing on feedbacks maximizing with the guarantee the own payoffs. Guaranteed feedbacks are constructed in the framework of the theory of generalized solutions of Hamilton–Jacobi equations. The analytical formulas are obtained for corresponding value functions. The equilibrium trajectory is generated and its properties are investigated. The considered approach provides new qualitative results for the equilibrium trajectory in evolutionary games.
Keywords: game theory, algorithms of equilibrium search.
@article{TIMM_2014_20_3_a7,
     author = {N. A. Krasovskiy and A. V. Kryazhimskiy and A. M. Tarasyev},
     title = {Hamilton{\textendash}Jacobi equations in evolutionary games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {114--131},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a7/}
}
TY  - JOUR
AU  - N. A. Krasovskiy
AU  - A. V. Kryazhimskiy
AU  - A. M. Tarasyev
TI  - Hamilton–Jacobi equations in evolutionary games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 114
EP  - 131
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a7/
LA  - ru
ID  - TIMM_2014_20_3_a7
ER  - 
%0 Journal Article
%A N. A. Krasovskiy
%A A. V. Kryazhimskiy
%A A. M. Tarasyev
%T Hamilton–Jacobi equations in evolutionary games
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 114-131
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a7/
%G ru
%F TIMM_2014_20_3_a7
N. A. Krasovskiy; A. V. Kryazhimskiy; A. M. Tarasyev. Hamilton–Jacobi equations in evolutionary games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 114-131. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a7/

[1] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 185 pp. | MR

[4] Kryazhimskii A. V., Osipov Yu. S., “O differentsialno-evolyutsionnykh igrakh”, Tr. MIAN, 211, 1995, 257–287 | MR | Zbl

[5] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 390 pp. | MR | Zbl

[6] Friedman D., “Evolutionary games in economics”, Econometrica, 59:3 (1991), 637–666 | DOI | MR | Zbl

[7] Intriligator M., Mathematical optimization and economic theory, Prentice-Hall, N.Y., 1971, 529 pp. | MR

[8] Hofbauer J., Sigmund K., The theory of evolution and dynamic systems, Cambridge Univ. Press, Cambridge, 1988, 341 pp. | MR | Zbl

[9] Basar T., Olsder G. J., Dynamic noncooperative game theory, Acad. Press, London–N.Y., 1982, 430 pp. | MR | Zbl

[10] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985, 272 pp. | MR

[11] Tarasyev A. M., A differential model for a $2\times2$ evolutionary game dynamics, Working Paper WP-94-63, IIASA, Laxenburg, 1994, 32 pp.

[12] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 214 pp. | MR | Zbl

[13] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:4 (1983), 1–42 | DOI | MR | Zbl

[14] Kryazhimskii A. V., Tarasyev A. M., Equilibrium and guaranteeing solutions in evolutionary nonzero sum games, Interim Report IR-98-003, IIASA, Laxenburg, 1998, 52 pp.

[15] Subbotin A. I., Tarasev A. M., “Sopryazhennye proizvodnye funktsii tseny differentsialnoi igry”, Dokl. AN SSSR, 283:3 (1985), 559–564 | MR | Zbl

[16] Aubin J.-P., “A survey of viability theory”, SIAM J. Control Optim., 28:4 (1990), 749–788 | DOI | MR | Zbl

[17] Krasovskii N. A., Tarasev A. M., “Poisk tochki maksimuma vektornogo kriteriya s dekompozitsionnymi svoistvami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 167–182

[18] Krasovskii N. A., Tarasev A. M., “Dekompozitsionnyi algoritm poiska ravnovesiya v dinamicheskoi igre”, Mat. teoriya igr i ee pril., 3:4 (2011), 49–88

[19] Tarasyev A.M., “Analytic solutions for evolutionary nonzero sum games”, Dynamics and Control, Stability and Control: Theory, Methods, and Applications, 9, eds. G. Leitmann, F. E. Udwadia, A. V. Kryazhimskii, Gordon and Breach Science Publishers, Amsterdam, 1999, 139–149 | MR

[20] CNN Money, [e-resource], URL: http://money.cnn.com/

[21] Rynok Foreks. Grafiki dokhodnosti obligatsii, [Elektronnyi resurs], URL: http://www.fxstreet.ru.com/charts/bond-yield/