Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 98-113
Voir la notice de l'article provenant de la source Math-Net.Ru
Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion are investigated. The direct problem consists in finding a solution of the corresponding boundary value problem for given data on the boundary of the domain of the independent variable. The peculiarity of the direct problem consists in the inhomogeneity and irregularity of mixed boundary data. Solvability and stability conditions are specified for the direct problem. The inverse boundary value problem consists in finding some traces of the solution of the corresponding boundary value problem for given standard and additional data on a certain part of the boundary of the domain of the independent variable. The peculiarity of the inverse problem consists in the ill-posedness of this problem. Regularizing methods and solution algorithms are developed for the inverse problem.
Keywords:
direct problem, mixed boundary condition, weak solution, stability, inverse problem, regularization, iterative methods.
@article{TIMM_2014_20_3_a6,
author = {A. I. Korotkii and Yu. V. Starodubtseva},
title = {Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {98--113},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a6/}
}
TY - JOUR AU - A. I. Korotkii AU - Yu. V. Starodubtseva TI - Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 98 EP - 113 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a6/ LA - ru ID - TIMM_2014_20_3_a6 ER -
%0 Journal Article %A A. I. Korotkii %A Yu. V. Starodubtseva %T Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion %J Trudy Instituta matematiki i mehaniki %D 2014 %P 98-113 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a6/ %G ru %F TIMM_2014_20_3_a6
A. I. Korotkii; Yu. V. Starodubtseva. Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 98-113. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a6/