Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 98-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion are investigated. The direct problem consists in finding a solution of the corresponding boundary value problem for given data on the boundary of the domain of the independent variable. The peculiarity of the direct problem consists in the inhomogeneity and irregularity of mixed boundary data. Solvability and stability conditions are specified for the direct problem. The inverse boundary value problem consists in finding some traces of the solution of the corresponding boundary value problem for given standard and additional data on a certain part of the boundary of the domain of the independent variable. The peculiarity of the inverse problem consists in the ill-posedness of this problem. Regularizing methods and solution algorithms are developed for the inverse problem.
Keywords: direct problem, mixed boundary condition, weak solution, stability, inverse problem, regularization, iterative methods.
@article{TIMM_2014_20_3_a6,
     author = {A. I. Korotkii and Yu. V. Starodubtseva},
     title = {Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--113},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a6/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - Yu. V. Starodubtseva
TI  - Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 98
EP  - 113
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a6/
LA  - ru
ID  - TIMM_2014_20_3_a6
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A Yu. V. Starodubtseva
%T Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 98-113
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a6/
%G ru
%F TIMM_2014_20_3_a6
A. I. Korotkii; Yu. V. Starodubtseva. Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 98-113. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a6/

[1] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982, 319 pp. | MR

[2] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.

[3] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004, 478 pp.

[4] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2006, 210 pp. | MR

[5] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauch. izd-vo, Novosibirsk, 2009, 457 pp.

[6] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov”, Tr. Mezhdunar. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, v. 2, Izd-vo Ural. gos. un-ta, Ekaterinburg, 2006, 82–91

[7] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 88–97 | MR | Zbl

[8] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[10] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961, 203 pp.

[11] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 365 pp.

[12] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp. | MR

[13] Adams R. A., Sobolev spaces, Acad. Press, N.Y., 1975, 268 pp. | MR | Zbl

[14] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR

[15] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[16] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. | Zbl

[17] Lukaszewicz G., Rojas-Medar M., Santos M., “Stationary micropolar fluid flows with boundary data in $L_2$”, J. Math. Anal. Appl., 271:1 (2002), 91–107 | DOI | MR | Zbl

[18] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[19] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985, 590 pp. | MR

[20] Smirnov V. I., Kurs vysshei matematiki, v. 5, Fizmatlit, M., 1959, 657 pp.

[21] Villamizar-Rao E. J., Rodriguez-Bellido M. F., Rojas-Medar M. A., “The Boussinesq system with mixed nonsmooth boundary data”, C. R. Acad. Sci. Paris Ser. I, 343:3 (2006), 191–196 | DOI | MR

[22] Korotkii A. I., Starodubtseva Yu. V., “Rekonstruktsiya granichnykh rezhimov v modeli reaktsii-konvektsii-diffuzii”, Vest. Izhevskogo gos. tekhn. un-ta, 59:3 (2013), 146–149

[23] Starodubtseva Yu. V., “Pryamye i obratnye granichnye zadachi dlya modelei reaktsii-konvektsii-diffuzii”, Vestn. Tambovskogo un-ta. Estestvennye i tekhnicheskie nauki, 18:5 (2013), 2692–2693

[24] Tikhonov A. N., Glasko V. B., “Primenenie metoda regulyarizatsii v nelineinykh zadachakh”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 463–473 | Zbl