Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 76-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A control problem for solutions of a boundary value problem for a second-order ordinary differential equation with a small parameter at the second derivative is considered on a closed interval. The control is scalar and subject to integral constraints. We construct a complete asymptotic expansion in powers of the small parameter in the Erdelyi sense.
Keywords: optimal control, time-optimal problem, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2014_20_3_a4,
     author = {A. R. Danilin},
     title = {Asymptotic expansion of a~solution to a~singular perturbation optimal control problem on an interval with integral constraint},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {76--85},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 76
EP  - 85
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/
LA  - ru
ID  - TIMM_2014_20_3_a4
ER  - 
%0 Journal Article
%A A. R. Danilin
%T Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 76-85
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/
%G ru
%F TIMM_2014_20_3_a4
A. R. Danilin. Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 76-85. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[3] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[4] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Mir, M., 1972, 441 pp. | MR | Zbl

[5] Erdeii A., Asimptoticheskie razlozheniya, Fizmatgiz, M., 1962, 127 pp.

[6] Danilin A. R., Korobitsyna N. S., “Asimptoticheskie otsenki resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya na otrezke s geometricheskimi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 3, 2013, 104–112

[7] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[8] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | DOI | MR | Zbl

[9] Danilin A. R., Zorin A. P., “Asimptotika resheniya zadachi granichnogo optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 95–107

[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp. | MR

[11] Krasovskii A. N., Reshetov V. M., “Zadacha sblizheniya–ukloneniya v sistemakh s malym parametrom pri proizvodnykh”, Prikl. matematika i mekhanika, 38:5 (1974), 771–779 | MR

[12] Subbotina N. N., “Asimptotika singulyarno vozmuschennykh uravnenii Gamiltona–Yakobi”, Prikl. matematika i mekhanika, 63:2 (1999), 220–230 | MR | Zbl

[13] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | MR | Zbl

[14] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.