@article{TIMM_2014_20_3_a4,
author = {A. R. Danilin},
title = {Asymptotic expansion of a~solution to a~singular perturbation optimal control problem on an interval with integral constraint},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {76--85},
year = {2014},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/}
}
TY - JOUR AU - A. R. Danilin TI - Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 76 EP - 85 VL - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/ LA - ru ID - TIMM_2014_20_3_a4 ER -
%0 Journal Article %A A. R. Danilin %T Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint %J Trudy Instituta matematiki i mehaniki %D 2014 %P 76-85 %V 20 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/ %G ru %F TIMM_2014_20_3_a4
A. R. Danilin. Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 76-85. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[3] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR
[4] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Mir, M., 1972, 441 pp. | MR | Zbl
[5] Erdeii A., Asimptoticheskie razlozheniya, Fizmatgiz, M., 1962, 127 pp.
[6] Danilin A. R., Korobitsyna N. S., “Asimptoticheskie otsenki resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya na otrezke s geometricheskimi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 3, 2013, 104–112
[7] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR
[8] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | DOI | MR | Zbl
[9] Danilin A. R., Zorin A. P., “Asimptotika resheniya zadachi granichnogo optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 95–107
[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp. | MR
[11] Krasovskii A. N., Reshetov V. M., “Zadacha sblizheniya–ukloneniya v sistemakh s malym parametrom pri proizvodnykh”, Prikl. matematika i mekhanika, 38:5 (1974), 771–779 | MR
[12] Subbotina N. N., “Asimptotika singulyarno vozmuschennykh uravnenii Gamiltona–Yakobi”, Prikl. matematika i mekhanika, 63:2 (1999), 220–230 | MR | Zbl
[13] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | MR | Zbl
[14] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.