Asymptotic expansion of a~solution to a~singular perturbation optimal control problem on an interval with integral constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 76-85
Voir la notice de l'article provenant de la source Math-Net.Ru
A control problem for solutions of a boundary value problem for a second-order ordinary differential equation with a small parameter at the second derivative is considered on a closed interval. The control is scalar and subject to integral constraints. We construct a complete asymptotic expansion in powers of the small parameter in the Erdelyi sense.
Keywords:
optimal control, time-optimal problem, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2014_20_3_a4,
author = {A. R. Danilin},
title = {Asymptotic expansion of a~solution to a~singular perturbation optimal control problem on an interval with integral constraint},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {76--85},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/}
}
TY - JOUR AU - A. R. Danilin TI - Asymptotic expansion of a~solution to a~singular perturbation optimal control problem on an interval with integral constraint JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 76 EP - 85 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/ LA - ru ID - TIMM_2014_20_3_a4 ER -
%0 Journal Article %A A. R. Danilin %T Asymptotic expansion of a~solution to a~singular perturbation optimal control problem on an interval with integral constraint %J Trudy Instituta matematiki i mehaniki %D 2014 %P 76-85 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/ %G ru %F TIMM_2014_20_3_a4
A. R. Danilin. Asymptotic expansion of a~solution to a~singular perturbation optimal control problem on an interval with integral constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 76-85. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a4/