Matrix resolving functions in game dynamic problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 324-333 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper concerns conflict-controlled processes of general kind with cylindrical terminal set. Solutions of a dynamic system are presented in a general form, encompassing, in particular, processes with various-type fractional derivatives, impulse processes, and systems of integral, integro-differential and difference-differential equations. Ideas of the method of resolving functions are used as a basis for investigation. While scalar resolving functions execute attraction of sets to the origin, the matrix functions introduced in the paper also admit rotation through any angle, that essentially extends the scope of the method applications. Sufficient conditions for the game termination in a guaranteed time in the class of quasi- and stroboscopic strategies are developed.
Keywords: set-valued mapping, conflict-controlled process, Pontryagin's condition, measurable choice, extremal selection, $H$-convex set.
@article{TIMM_2014_20_3_a21,
     author = {A. A. Chikrii and G. Ts. Chikrii},
     title = {Matrix resolving functions in game dynamic problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {324--333},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a21/}
}
TY  - JOUR
AU  - A. A. Chikrii
AU  - G. Ts. Chikrii
TI  - Matrix resolving functions in game dynamic problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 324
EP  - 333
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a21/
LA  - ru
ID  - TIMM_2014_20_3_a21
ER  - 
%0 Journal Article
%A A. A. Chikrii
%A G. Ts. Chikrii
%T Matrix resolving functions in game dynamic problems
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 324-333
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a21/
%G ru
%F TIMM_2014_20_3_a21
A. A. Chikrii; G. Ts. Chikrii. Matrix resolving functions in game dynamic problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 324-333. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a21/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp. | MR

[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 516 pp. | MR

[5] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkhauser, Boston, 1995, 322 pp. | MR

[6] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[7] Krasovskii N. N., Lukoyanov N. Yu., “Uravneniya tipa Gamiltona–Yakobi v nasledstvennykh sistemakh: minimaksnye resheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6, no. 1–2, 2000, 110–130 | MR

[8] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[9] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2011, 292 pp.

[10] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 456 pp. | MR | Zbl

[11] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[12] Chentsov A. G., Ekstremalnye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii, NII “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2008, 240 pp.

[13] Subbotin A. I., Obobschennye resheniya upravlenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyuternykh issledovanii, Izhevsk, 2003, 336 pp.

[14] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dunamical optimization”, J. Math. Sci. (N.Y.), 135:3 (2006), 2955–3091 | DOI | MR

[15] Tarasev A. N., Ushakov V. N., O postroenii stabilnykh mostov v minimaksnoi igre sblizheniya–ukloneniya, Dep. v VINITI No 2454-83, Sverdlovsk, 1983, 61 pp.

[16] Zavalischin S. G., Sesekin A. N., Impulsnye protsessy. Modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR

[17] Tretyakov V. E., “K teorii stokhasticheskikh igr”, Dokl. AN SSSR, 269:5 (1983), 1049–1053 | MR

[18] Batukhtin V. D., “Ob odnoi igrovoi zadache navedeniya s nepolnoi informatsiei”, Prikl. matematika i mekhanika, 44:4 (1980), 595–601 | MR | Zbl

[19] Kumkov S. I., Patsko V. S., “Control of informational sets in a pursuit problem”, Annals of the international society of dynamic games. New trends in dynamic games and applications, Ann. Internat. Soc. Dynam. Games, 3, Birkhauser, Boston, 1995, 191–206 | MR | Zbl

[20] Gusev M. I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51

[21] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 185 pp. | MR

[22] Kurzhanskii A. B., Melnikov N. B., “O zadache sinteza upravlenii: alternirovannyi integral Pontryagina i uravnenie Gamiltona–Yakobi”, Mat. sb., 191:6 (2000), 69–100 | DOI | MR | Zbl

[23] Pontryagin L. S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp. | MR

[24] Nikolskii M. S., Pervyi pryamoi metod L. S. Pontryagina v differentsialnykh igrakh, Izd-vo MGU, M., 1984, 65 pp. | Zbl

[25] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1980, 198 pp.

[26] Chikrii A. A., “Ob odnom analiticheskom metode v dinamicheskikh igrakh sblizheniya”, Tr. MIAN, 271, 2010, 76–92 | MR

[27] Chikrii A. A., Conflict controlled processes, Kluwer Acad. Publ., Boston–London–Dordrecht, 1997, 424 pp. | MR | Zbl

[28] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo “Udmurtskii universitet”, Izhevsk, 2009, 266 pp. | MR | Zbl

[29] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston–Basel–Berlin, 1990, 461 pp. | MR | Zbl

[30] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR | Zbl