On the question of construction of an attraction set under constraints of asymptotic nature
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 309-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a variant of the attainability problem with constraints of asymptotic nature on the choice of controls. More exactly, we consider a control problem in the class of impulses of given intensity and vanishingly small length. The situation is complicated by the presence of discontinuous dependences, which produces effects of the type of multiplying a discontinuous function by a generalized function. The constructed extensions in the special class of finitely additive measures make it possible to present the required solution, defined as an asymptotic analog of an attainability domain, in terms of a continuous image of a compact set, which is described with the use of the Stone space corresponding to the natural algebra of sets of the control interval. One of the authors had the honor of communicating with Nikolai Nikolaevich Krasovskii for many years and discussed with him problems that led to the statement considered in the paper. Krasovskii's support of this research direction provided possibilities for its fruitful development. His disciples and colleagues will always cherish the memory of Nikolai Nikolaevich in their hearts.
Keywords: filter base, finitely additive measure, attraction set, generalized element, ultrafilter.
@article{TIMM_2014_20_3_a20,
     author = {A. G. Chentsov and A. P. Baklanov},
     title = {On the question of construction of an attraction set under constraints of asymptotic nature},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {309--323},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a20/}
}
TY  - JOUR
AU  - A. G. Chentsov
AU  - A. P. Baklanov
TI  - On the question of construction of an attraction set under constraints of asymptotic nature
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 309
EP  - 323
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a20/
LA  - ru
ID  - TIMM_2014_20_3_a20
ER  - 
%0 Journal Article
%A A. G. Chentsov
%A A. P. Baklanov
%T On the question of construction of an attraction set under constraints of asymptotic nature
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 309-323
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a20/
%G ru
%F TIMM_2014_20_3_a20
A. G. Chentsov; A. P. Baklanov. On the question of construction of an attraction set under constraints of asymptotic nature. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 309-323. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a20/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[2] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR | Zbl

[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[4] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Pub. Corp., New York–London–Moscow, 1996, 244 pp. | MR | Zbl

[5] Chentsov A. G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht–Boston–London, 1997, 322 pp. | MR | Zbl

[6] Chentsov A.G., Morina S. I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[7] Chentsov A. G., “Finitely additive measures and extensions of abstract control problems”, J. Math. Sci., 133:2 (2006), 1045–1206 | DOI | MR | Zbl

[8] Elyasberg P. E., Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli, Nauka, M., 1965, 540 pp.

[9] Skvortsova A. V., Chentsov A. G., “O postroenii asimptoticheskogo analoga puchka traektorii lineinoi sistemy s odnoimpulsnym upravleniem”, Differents. uravneniya, 40:12 (2004), 1645–1657 | MR | Zbl

[10] Chentsov A. G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 293–311

[11] Chentsov A. G., “K voprosu o korrektnom rasshirenii odnoi zadachi o vybore plotnosti veroyatnosti pri ogranicheniyakh na sistemu matematicheskikh ozhidanii”, Uspekhi mat. nauk, 50:5 (1995), 223–242 | MR | Zbl

[12] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[13] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[14] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[15] Chentsov A. G., “K voprosu o predstavlenii ultrafiltrov i ikh primenenii v konstruktsiyakh rasshirenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 4, 2013, 289–307

[16] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[17] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968, 384 pp.

[18] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 113–142

[19] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, Izd-vo UGTU-UPI, Ekaterinburg, 2009, 389 pp.

[20] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[21] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. II, Izd-vo UGTU-UPI, Ekaterinburg, 2010, 542 pp.

[22] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 895 pp.

[23] Chentsov A. G., “K voprosu o korrektnom rasshirenii nekotorykh neustoichivykh zadach upravleniya s integralnymi ogranicheniyami”, Izv. RAN. Ser. mat., 63:3 (1999), 185–223 | DOI | MR | Zbl

[24] Chentsov A. G., “O nekotorykh voprosakh struktury ultrafiltrov, svyazannykh s rasshireniyami abstraktnykh zadach upravleniya”, Avtomatika i telemekhanika, 2013, no. 12, 119–139 | MR | Zbl

[25] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 458 pp. | MR | Zbl

[26] Melentsov A. A., Baidosov V. A., Zmeev G. M., Elementy teorii mery i integrala, Ucheb. posobie., Izd-vo Ural. gos. un-ta, Sverdlovsk, 1980, 100 pp.

[27] Chentsov A. G., “Mnozhestva prityazheniya v abstraktnykh zadachakh o dostizhimosti: ekvivalentnye predstavleniya i osnovnye svoistva”, Izv. vuzov. Matematika, 2013, no. 11, 33–50

[28] Chentsov A. G., “O predstavlenii maksimina v igrovoi zadache s ogranicheniyami asimptoticheskogo kharaktera”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 104–119

[29] Baklanov A. P., “Ob odnoi igrovoi zadache asimptoticheski impulsnogo upravleniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 3, 3–14

[30] Baklanov A. P., “K voprosu o predstavlenii maksimina v odnoi zadache impulsnogo upravleniya”, Differents. uravneniya i protsessy upr., 2012, no. 3, 49–69