Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 41-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with first order necessary optimality conditions for a class of infinite-horizon optimal control problems that arise in economic applications. Neither convergence of the integral utility functional nor local boundedness of the optimal control is assumed. Using the classical needle variations technique we develop a normal form version of the Pontryagin maximum principle with an explicitly specified adjoint variable under weak regularity assumptions. The result generalizes some previous results in this direction. An illustrative economical example is presented.
Keywords: infinite horizon, Pontryagin maximum principle, transversality conditions, weak regularity assumptions.
@article{TIMM_2014_20_3_a2,
     author = {S. M. Aseev and V. M. Veliov},
     title = {Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {41--57},
     year = {2014},
     volume = {20},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a2/}
}
TY  - JOUR
AU  - S. M. Aseev
AU  - V. M. Veliov
TI  - Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 41
EP  - 57
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a2/
LA  - en
ID  - TIMM_2014_20_3_a2
ER  - 
%0 Journal Article
%A S. M. Aseev
%A V. M. Veliov
%T Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 41-57
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a2/
%G en
%F TIMM_2014_20_3_a2
S. M. Aseev; V. M. Veliov. Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 41-57. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a2/

[1] Plenum, New York, 1987 | MR

[2] Aseev S. M., Besov K. O., Kryazhimskii A. V., “Infinite-horizon optimal control problems in economics”, Math. Surv., 67:2 (2012), 195–253 | DOI | MR | Zbl

[3] Aseev S. M., Kryazhimskii A. V., “The Pontryagin Maximum principle and transversality conditions for a class optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43:3 (2004), 1094–1119 | DOI | MR | Zbl

[4] Aseev S. M., Kryazhimskii A. V., “The Pontryagin maximum principle and optimal economic growth problems”, Proc. Steklov Inst. Math., 257, 2007, 1–255 | DOI | MR | Zbl

[5] Aseev S. M., Kryazhimskii A. V., “On a class of optimal control problems arising in mathematical economics”, Proc. Steklov Inst. Math., 262, 2008, 10–25 | DOI | MR | Zbl

[6] Aseev S. M., Veliov V. M., “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19:1–2 (2012), 43–63 | MR | Zbl

[7] Aseev S. M., Veliov V. M., “Needle variations in infinite-horizon optimal control”, Variational and Optimal Control Problems on Unbounded Domains, Contemporary Mathematics, 619, eds. G. Wolansky, A. J. Zaslavski, Amer. Math. Soc., Providence, 2014, 1–17 | DOI

[8] Barro R. J., Sala-i-Martin X., Economic growth, McGraw Hill, New York, 1995, 539 pp.

[9] Besov K. O., “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function”, Proc. Steklov Inst. Math., 284, 2014, 50–80 | DOI

[10] Carlson D. A., Haurie A. B., Leizarowitz A., Infinite horizon optimal control. Deterministic and stochastic systems, Springer, Berlin, 1991, 332 pp. | MR | Zbl

[11] Clarke F. H., Optimization and nonsmooth analysis, A Wiley, New York, 1983, 308 pp. | MR | Zbl

[12] Clarke F., Functional analysis, calculus of variations and optimal control, Graduate Texts in Mathematics, 264, Springer-Verlag, London, 2013, 591 pp. | DOI | MR | Zbl

[13] Kluwer, Dordrecht, 1988 | MR | Zbl

[14] Grass D., Caulkins J. P., Feichtinger G., Tragler G., Behrens D. A., Optimal control of nonlinear processes: with applications in drugs, corruption and terror, Springer, Berlin, 2008, 552 pp. | MR

[15] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl

[16] Hartman P., Ordinary differential equations, J. Wiley Sons, New York, 1964, 612 pp. | MR | Zbl

[17] Hu S., Papageorgiou N. S., Handbook of Multivalued Analysis, v. I, Theory, Kluwer, Dordrecht, 1997, 980 pp. | MR | Zbl

[18] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50 (1982), 975–985 | DOI | MR | Zbl

[19] Frederick Ungar Publishing Co., New York, 1955 | MR

[20] Pergamon, Oxford, 1964 | Zbl

[21] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics, v. I, Lect. Notes Oper. Res. Math. Econ., 11, Springer, Berlin, 1969, 241–292 | MR

[22] Skritek B., Veliov V. M., On the infinite-horizon optimal control of age-structured systems, Research Report 2014-03, ORCOS, Vienna University of Technology, Vienna, 2014, 26 pp. URL: http://orcos.tuwien.ac.at/fileadmin/t/orcos/Research_Reports/2014-03.pdf