Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 276-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Analytical formulas are obtained for extremal points of a singular set in a class of time-optimal problems on a plane. It is proved that the formation of singularities depends directly on the geometry of the target set and on the differential properties of its boundary. Three typical cases are studied and conditions for the appearance of nonsmooth singularities are found. Examples are given.
Keywords: time-optimal problem, optimal result function, diffeomorphism, symmetry set.
Mots-clés : eikonal
@article{TIMM_2014_20_3_a18,
     author = {A. A. Uspenskii},
     title = {Calculation formulas for nonsmooth singularities of the optimal result function in a~time-optimal problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {276--290},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a18/}
}
TY  - JOUR
AU  - A. A. Uspenskii
TI  - Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 276
EP  - 290
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a18/
LA  - ru
ID  - TIMM_2014_20_3_a18
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%T Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 276-290
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a18/
%G ru
%F TIMM_2014_20_3_a18
A. A. Uspenskii. Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 276-290. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a18/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR

[3] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh tekhnologii, M.–Izhevsk, 2003, 336 pp.

[4] Arnold V. I., Osobennosti kaustik i volnovykh frontov, “Fazis”, M., 1996, 334 pp. | MR | Zbl

[5] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR

[6] Sedykh V. D., “On the topology of symmetry sets of smooth submanifolds in $\mathbb R^n$”, Singularity Theory and Its Applications, Adv. Stud. Pure Math., 43, eds. S. Izumiya, G. Ishikawa, H. Tokunaga, I. Shimada, T. Sano, Tokyo, 2006, 401–419 | MR | Zbl

[7] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I”, Mat. sb., 98(140):3 (1975), 450–493 | MR | Zbl

[8] Kolokoltsov V. N., Maslov V. P., “Zadacha Koshi dlya odnorodnogo uravneniya Bellmana”, Dokl. AN SSSR, 296:4 (1987), 796–800 | MR

[9] Slyusarev G. G., Geometricheskaya optika, Izd-vo AN SSSR, M.–L., 1946, 332 pp. | MR

[10] Solimeno O., Krozinyani B., Di Porto P., Difraktsiya i volnovodnoe rasprostranenie opticheskogo izlucheniya, Mir, M., 1989, 662 pp.

[11] Tarasev A. M., Uspenskii A. A., Ushakov V. N., “Approksimatsionnye operatory i konechno-raznostnye skhemy dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Tekhn. kibernetika, 1994, no. 3, 173–185 | MR | Zbl

[12] Papakov G. V., Tarasev A. M., Uspenskii A. A., “Chislennye approksimatsii obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Prikl. matematika i mekhanika, 60:4 (1996), 570–581 | MR | Zbl

[13] Pakhotinskikh V. Yu., Uspenskii A. A., Ushakov V. N., “Konstruirovanie stabilnykh mostov v differentsialnykh igrakh s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 67:5 (2003), 771–783 | MR

[14] Uspenskii A. A., Ushakov V. N., Fomin A. N., $\alpha$-mnozhestva i ikh svoistva, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2004, 62 pp.

[15] Uspenskii A. A., Analiticheskie metody vychisleniya mery nevypuklosti ploskikh mnozhestv, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2007, 21 pp.

[16] Uspenskii A. A., Lebedev P. D., “Issledovanie geometrii i asimptotiki volnovykh frontov v nekotorykh zadachakh upravleniya”, Tr. 9-i mezhdunar. Chetaevskoi konferentsii, v. 5, 2007, 224–236

[17] Uspenskii A. A., Lebedev P. D., “Geometriya i asimptotika volnovykh frontov”, Izv. vuzov. Matem., 2008, no. 3, 27–37 | MR | Zbl

[18] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. Instituta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 182–191 | MR | Zbl

[19] Uspenskii A. A., Lebedev P. D., “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Tr. Instituta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 82–99

[20] Uspenskii A. A., Lebedev P. D., “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | MR | Zbl

[21] Uspenskii A. A., Lebedev P. D., “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 171–185

[22] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Geometriya singulyarnykh krivykh dlya odnogo klassa zadach bystrodeistviya”, Vestn. Sankt-Peterburgskogo un-ta. Ser. 10, 2013, no. 3, 157–167

[23] Spivak M., Matematicheskii analiz na mnogoobraziyakh, Mir, M., 1968, 164 pp. | MR | Zbl

[24] Rashevskii P. K., Kurs differentsialnoi geometrii, “Editorial URSS”, M., 2003, 432 pp.