Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 263-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We introduce the notion of so-called standard control system, whose phase space is a finite-dimensional smooth manifold satisfying a series of conditions; in particular, it is supposed to be connected and orientable and have a countable atlas. For a given standard control system, we consider a set of time shifts and construct the closure of this set in the topology of uniform convergence on compact sets. In these terms, we study the conditions of uniform local reachability of a given trajectory. The main result is formulated in terms of a modified Lyapunov function. A simple example is considered.
Keywords: control systems, uniform local controllability, finite-dimensional smooth manifolds, Lyapunov functions.
@article{TIMM_2014_20_3_a17,
     author = {E. L. Tonkov},
     title = {Barbashin and {Krasovskii's} asymptotic stability theorem in application to control systems on smooth manifolds},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {263--275},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a17/}
}
TY  - JOUR
AU  - E. L. Tonkov
TI  - Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 263
EP  - 275
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a17/
LA  - ru
ID  - TIMM_2014_20_3_a17
ER  - 
%0 Journal Article
%A E. L. Tonkov
%T Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 263-275
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a17/
%G ru
%F TIMM_2014_20_3_a17
E. L. Tonkov. Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 263-275. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a17/

[1] Barbashin E. A., Krasovskii N. N., “Ob ustoichivosti dvizheniya v tselom”, Dokl. AN SSSR, 86:6 (1952), 453–456 | Zbl

[2] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201

[3] Tonkov E. L., “Magistralnye protsessy upravlyaemykh sistem na gladkikh mnogoobraziyakh”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 4, 132–145

[4] Nemytskii V. V. Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M.–L., 1949, 550 pp.

[5] Anosov D. V., Lektsii po lineinoi algebre, Regulyarnaya i khaoticheskaya dinamika, M., 1999, 105 pp. | Zbl

[6] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, URSS, M., 1986, 759 pp. | MR

[7] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971, 239 pp. | MR

[8] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005, 391 pp.

[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1971, 224 pp. | MR

[10] Filippov A. F., “Differentsialnye uravneniya s razryvnoi pravoi chastyu”, Mat. sb., 51(93):1 (1960), 99–128 | MR | Zbl

[11] Bebutov M. V., “O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii”, Byull. In-ta matematiki pri MGU, 2:5 (1940), 1–52

[12] Panasenko E. A., Rodina L. I., Tonkov E. L., “Prostranstvo $\mathrm{clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i differentsialnye vklyucheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 162–177 | Zbl

[13] Skvortsov V. A., “Borelevskoe mnozhestvo”, Matematicheskaya entsiklopetsiya, v. 1, Sovetskaya entsiklopetsiya, M., 1977, 535

[14] Krein S. G. (red.), Funktsionalnyi analiz, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp. | MR