@article{TIMM_2014_20_3_a17,
author = {E. L. Tonkov},
title = {Barbashin and {Krasovskii's} asymptotic stability theorem in application to control systems on smooth manifolds},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {263--275},
year = {2014},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a17/}
}
TY - JOUR AU - E. L. Tonkov TI - Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 263 EP - 275 VL - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a17/ LA - ru ID - TIMM_2014_20_3_a17 ER -
%0 Journal Article %A E. L. Tonkov %T Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds %J Trudy Instituta matematiki i mehaniki %D 2014 %P 263-275 %V 20 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a17/ %G ru %F TIMM_2014_20_3_a17
E. L. Tonkov. Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 263-275. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a17/
[1] Barbashin E. A., Krasovskii N. N., “Ob ustoichivosti dvizheniya v tselom”, Dokl. AN SSSR, 86:6 (1952), 453–456 | Zbl
[2] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201
[3] Tonkov E. L., “Magistralnye protsessy upravlyaemykh sistem na gladkikh mnogoobraziyakh”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 4, 132–145
[4] Nemytskii V. V. Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M.–L., 1949, 550 pp.
[5] Anosov D. V., Lektsii po lineinoi algebre, Regulyarnaya i khaoticheskaya dinamika, M., 1999, 105 pp. | Zbl
[6] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, URSS, M., 1986, 759 pp. | MR
[7] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971, 239 pp. | MR
[8] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005, 391 pp.
[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1971, 224 pp. | MR
[10] Filippov A. F., “Differentsialnye uravneniya s razryvnoi pravoi chastyu”, Mat. sb., 51(93):1 (1960), 99–128 | MR | Zbl
[11] Bebutov M. V., “O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii”, Byull. In-ta matematiki pri MGU, 2:5 (1940), 1–52
[12] Panasenko E. A., Rodina L. I., Tonkov E. L., “Prostranstvo $\mathrm{clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i differentsialnye vklyucheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 162–177 | Zbl
[13] Skvortsov V. A., “Borelevskoe mnozhestvo”, Matematicheskaya entsiklopetsiya, v. 1, Sovetskaya entsiklopetsiya, M., 1977, 535
[14] Krein S. G. (red.), Funktsionalnyi analiz, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp. | MR