@article{TIMM_2014_20_3_a16,
author = {A. A. Tolstonogov},
title = {Differential inclusions with unbounded right-hand side. {Existence} and relaxation theorems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {246--262},
year = {2014},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a16/}
}
TY - JOUR AU - A. A. Tolstonogov TI - Differential inclusions with unbounded right-hand side. Existence and relaxation theorems JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 246 EP - 262 VL - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a16/ LA - ru ID - TIMM_2014_20_3_a16 ER -
A. A. Tolstonogov. Differential inclusions with unbounded right-hand side. Existence and relaxation theorems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 246-262. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a16/
[1] Wazewski T., “Sur une generalization des la notion de solution d'une equation au contingent”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 10:1 (1962), 11–15 | MR | Zbl
[2] Filippov A. F., “Klassicheskie resheniya uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1967, no. 3, 16–26 | Zbl
[3] Goncharov V. V., Tolstonogov A. A., “Sovmestnye nepreryvnye selektory mnogoznachnykh otobrazhenii s nevypuklymi znacheniyami i ikh prilozheniya”, Mat. sb., 182:7 (1991), 946–969 | MR | Zbl
[4] Loewen P. D., Rockafellar R. T., “Optimal control of unbounded differential inclusions”, SIAM J. Control Optim., 32:2 (1994), 442–470 | DOI | MR | Zbl
[5] Ioffe A., “Existence and relaxation theorems for unbounded differential inclusions”, J. Convex Anal., 13:2 (2006), 353–362 | MR | Zbl
[6] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl
[7] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Mat. zametki, 48:5 (1990), 109–120 | MR | Zbl
[8] Attouch H., Wets R. J. B., “Quantitative stability of variational systems: I. The epigraphical distance”, Trans. Amer. Math. Soc., 328:2 (1991), 695–729 | MR | Zbl
[9] Gutman S., “Topological equavalence in the space of integral vector-valued functions”, Proc. Amer. Math. Soc., 93:1 (1985), 40–42 | DOI | MR | Zbl
[10] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR