Regularization of an ill-posed Cauchy problem for an autonomous system with delay with the use of a class of stabilizers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 234-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an autonomous linear system of differential equations with delay, we find asymptotic formulas for the analytic dependence of regularized solutions of this system on a regularization parameter on a finite closed interval of the negative semiaxis. We use the Tychonoff regularization method with a stabilizing functional not generating a compact set in the state space. The problem is solved for sufficiently smooth initial functions, which, however, do not satisfy the conditions that guarantee a continuous extension of solutions to decreasing time.
Keywords: differential equations with delay, ill-posed problem, asymptotic methods.
@article{TIMM_2014_20_3_a15,
     author = {P. G. Surkov},
     title = {Regularization of an ill-posed {Cauchy} problem for an autonomous system with delay with the use of a~class of stabilizers},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {234--245},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a15/}
}
TY  - JOUR
AU  - P. G. Surkov
TI  - Regularization of an ill-posed Cauchy problem for an autonomous system with delay with the use of a class of stabilizers
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 234
EP  - 245
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a15/
LA  - ru
ID  - TIMM_2014_20_3_a15
ER  - 
%0 Journal Article
%A P. G. Surkov
%T Regularization of an ill-posed Cauchy problem for an autonomous system with delay with the use of a class of stabilizers
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 234-245
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a15/
%G ru
%F TIMM_2014_20_3_a15
P. G. Surkov. Regularization of an ill-posed Cauchy problem for an autonomous system with delay with the use of a class of stabilizers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 234-245. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a15/

[1] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[2] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl

[3] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 424 pp. | MR

[4] Zverkin A. M., “O polnote sistemy reshenii tipa Floke dlya uravneniya s zapazdyvaniem”, Differents. uravneniya, 4:3 (1968), 474–478 | MR | Zbl

[5] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972, 352 pp. | MR | Zbl

[6] Dolgii Yu. F., Putilova E. N., “Prodolzhenie nazad reshenii lineinogo differentsialnogo uravneniya s zapazdyvaniem kak nekorrektnaya zadacha”, Differents. uravneniya, 29:8 (1993), 1317–1323 | MR

[7] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, M., 1986, 288 pp. | MR

[8] Dolgii Yu. F., Surkov P. G., “Asimptotika regulyarizovannykh reshenii lineinoi avtonomnoi sistemy differentsialnykh uravnenii s zapazdyvaniem”, Problemy dinamicheskogo upravleniya. Sb. nauch. tr., 2, fak.-t VMiK MGU im. M. V. Lomonosova, 2007, 71–99

[9] Dolgii Yu. F., Surkov P. G., “Asimptotika regulyarizovannykh reshenii lineinoi neavtonomnoi sistemy differentsialnykh uravnenii s operezheniem”, Differents. uravneniya, 46:4 (2010), 467–485 | MR | Zbl

[10] Dolgii Yu. F., Surkov P. G., “Nekorrektnaya zadacha vosstanovleniya chislennosti populyatsii v matematicheskoi modeli Khatchinsona”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 70–84

[11] Dolgii Yu. F., Surkov P. G., “Asimptotika regulyarizovannykh reshenii nekorrektnoi zadachi Koshi dlya avtonomnoi lineinoi sistemy differentsialnykh uravnenii s soizmerimymi zapazdyvaniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 4, 2013, 107–118

[12] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[13] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektno postavlennykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp.

[14] Dolgii Yu. F., “Kharakteristicheskoe uravnenie v zadache asimptoticheskoi ustoichivosti periodicheskoi sistemy s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 1, 2005, 85–96 | MR | Zbl

[15] Rapoport I.M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, AN USSR, Kiev, 1954, 292 pp. | MR

[16] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp. | MR | Zbl

[17] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl

[18] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982, 332 pp. | MR | Zbl