A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 218-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For systems linear in control we consider problems of recovering the dynamics and control from a posteriori statistics of trajectory sampling and known estimates for the sampling error. An optimal control problem of minimizing an integral regularized functional of dynamics and statistics residuals is introduced. Optimal synthesis is used to construct controls and trajectories that approximate a solution of the inverse problem. A numerical approximation method based on the method of characteristics for the Hamilton–Jacobi–Bellman equation and on the notion of minimax/viscosity solution is developed. Sufficient conditions are obtained under which the proposed approximations converge to a normal solution of the inverse problem under a matched vanishing of the approximation parameters (bounds for the sampling error, the regularizing parameter, the grid step in the state variable, and the integration step). Results of the numerical solution of problems of identification and control and trajectory recovery are presented for a mechanical model of gravitation under given statistics of phase coordinate sampling.
Mots-clés : identification
Keywords: regularization method, residual functional, feedback, optimal synthesis, Hamilton–Jacobi–Bellman equation, characteristic system, minimax/viscosity solution.
@article{TIMM_2014_20_3_a14,
     author = {N. N. Subbotina and T. B. Tokmantsev},
     title = {A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {218--233},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - T. B. Tokmantsev
TI  - A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 218
EP  - 233
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/
LA  - ru
ID  - TIMM_2014_20_3_a14
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A T. B. Tokmantsev
%T A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 218-233
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/
%G ru
%F TIMM_2014_20_3_a14
N. N. Subbotina; T. B. Tokmantsev. A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 218-233. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Subbotina N. N., Kolpakova E. A., Tokmantsev T. B., Shagalova L. G., Metod kharakteristik dlya uravneniya Gamiltona–Yakobi–Bellmana, RIO UrO RAN, Ekaterinburg, 2013, 244 pp.

[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 350 pp.

[5] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, 1957, 388 pp. | MR | Zbl

[6] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo. Perspektivy dinamicheskoi optimizatsii, In-t kompyuter. issled., M.–Izhevsk, 2003, 336 pp.

[7] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 281 pp. | MR

[8] Subbotina N. N., Tokmantsev T. B., “Klassicheskie kharakteristiki uravneniya Bellmana v konstruktsiyakh setochnogo optimalnogo sinteza”, Tr. MIAN, 271, 2010, 259–277 | MR

[9] Subbotina N. N., Tokmantsev T. B., “On grid optimal feedbacks to control problems of prescribed duration on the plane”, Advances in Dynamic Games, Annals of the ISDG, 11, Birkhäuser, Boston, 2011, 133–147 | MR | Zbl

[10] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 250 pp.

[11] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967, 225 pp. | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1974, 544 pp. | MR

[13] Davy J. L., “Properties of the solution set of a generalized differential equation”, Bull. Austral. Math. Soc, 6:3 (1972), 379–398 | DOI | MR | Zbl

[14] Subbotina N. N., Tokmantsev T. B., “The method of characteristics in inverse problems of dynamics”, Universal J. Control and Automation, 1:3 (2013), 79–85

[15] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 578 pp. | MR