Keywords: regularization method, residual functional, feedback, optimal synthesis, Hamilton–Jacobi–Bellman equation, characteristic system, minimax/viscosity solution.
@article{TIMM_2014_20_3_a14,
author = {N. N. Subbotina and T. B. Tokmantsev},
title = {A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {218--233},
year = {2014},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/}
}
TY - JOUR AU - N. N. Subbotina AU - T. B. Tokmantsev TI - A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 218 EP - 233 VL - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/ LA - ru ID - TIMM_2014_20_3_a14 ER -
%0 Journal Article %A N. N. Subbotina %A T. B. Tokmantsev %T A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data %J Trudy Instituta matematiki i mehaniki %D 2014 %P 218-233 %V 20 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/ %G ru %F TIMM_2014_20_3_a14
N. N. Subbotina; T. B. Tokmantsev. A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 218-233. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/
[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[3] Subbotina N. N., Kolpakova E. A., Tokmantsev T. B., Shagalova L. G., Metod kharakteristik dlya uravneniya Gamiltona–Yakobi–Bellmana, RIO UrO RAN, Ekaterinburg, 2013, 244 pp.
[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 350 pp.
[5] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, 1957, 388 pp. | MR | Zbl
[6] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo. Perspektivy dinamicheskoi optimizatsii, In-t kompyuter. issled., M.–Izhevsk, 2003, 336 pp.
[7] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 281 pp. | MR
[8] Subbotina N. N., Tokmantsev T. B., “Klassicheskie kharakteristiki uravneniya Bellmana v konstruktsiyakh setochnogo optimalnogo sinteza”, Tr. MIAN, 271, 2010, 259–277 | MR
[9] Subbotina N. N., Tokmantsev T. B., “On grid optimal feedbacks to control problems of prescribed duration on the plane”, Advances in Dynamic Games, Annals of the ISDG, 11, Birkhäuser, Boston, 2011, 133–147 | MR | Zbl
[10] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 250 pp.
[11] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967, 225 pp. | Zbl
[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1974, 544 pp. | MR
[13] Davy J. L., “Properties of the solution set of a generalized differential equation”, Bull. Austral. Math. Soc, 6:3 (1972), 379–398 | DOI | MR | Zbl
[14] Subbotina N. N., Tokmantsev T. B., “The method of characteristics in inverse problems of dynamics”, Universal J. Control and Automation, 1:3 (2013), 79–85
[15] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 578 pp. | MR