A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 218-233
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For systems linear in control we consider problems of recovering the dynamics and control from a posteriori statistics of trajectory sampling and known estimates for the sampling error. An optimal control problem of minimizing an integral regularized functional of dynamics and statistics residuals is introduced. Optimal synthesis is used to construct controls and trajectories that approximate a solution of the inverse problem. A numerical approximation method based on the method of characteristics for the Hamilton–Jacobi–Bellman equation and on the notion of minimax/viscosity solution is developed. Sufficient conditions are obtained under which the proposed approximations converge to a normal solution of the inverse problem under a matched vanishing of the approximation parameters (bounds for the sampling error, the regularizing parameter, the grid step in the state variable, and the integration step). Results of the numerical solution of problems of identification and control and trajectory recovery are presented for a mechanical model of gravitation under given statistics of phase coordinate sampling.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
identification
Keywords: regularization method, residual functional, feedback, optimal synthesis, Hamilton–Jacobi–Bellman equation, characteristic system, minimax/viscosity solution.
                    
                  
                
                
                Keywords: regularization method, residual functional, feedback, optimal synthesis, Hamilton–Jacobi–Bellman equation, characteristic system, minimax/viscosity solution.
@article{TIMM_2014_20_3_a14,
     author = {N. N. Subbotina and T. B. Tokmantsev},
     title = {A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {218--233},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/}
}
                      
                      
                    TY - JOUR AU - N. N. Subbotina AU - T. B. Tokmantsev TI - A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 218 EP - 233 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/ LA - ru ID - TIMM_2014_20_3_a14 ER -
%0 Journal Article %A N. N. Subbotina %A T. B. Tokmantsev %T A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data %J Trudy Instituta matematiki i mehaniki %D 2014 %P 218-233 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/ %G ru %F TIMM_2014_20_3_a14
N. N. Subbotina; T. B. Tokmantsev. A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 218-233. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a14/
