On the unimprovability of full-memory strategies in problems of guaranteed result optimization
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 204-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of guaranteed result optimization is considered for a control system described by an ordinary differential equation and for a performance functional that depends continuously on the trajectory of the system. The values of the control and of the disturbance satisfy compact geometric constraints. It is also assumed that the realization of the disturbance is subject to an unknown functional constraint from a given set of constraints that are compact in a Lebesgue space. It is shown that the optimal guaranteed result in the class of full-memory strategies in this problem coincides with the value of the optimal guaranteed result in the class of quasi-strategies.
Keywords: optimal guaranteed result, full-memory control strategies, functionally constrained disturbances, quasi-strategies.
@article{TIMM_2014_20_3_a13,
     author = {D. A. Serkov},
     title = {On the unimprovability of full-memory strategies in problems of guaranteed result optimization},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {204--217},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a13/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - On the unimprovability of full-memory strategies in problems of guaranteed result optimization
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 204
EP  - 217
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a13/
LA  - ru
ID  - TIMM_2014_20_3_a13
ER  - 
%0 Journal Article
%A D. A. Serkov
%T On the unimprovability of full-memory strategies in problems of guaranteed result optimization
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 204-217
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a13/
%G ru
%F TIMM_2014_20_3_a13
D. A. Serkov. On the unimprovability of full-memory strategies in problems of guaranteed result optimization. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 204-217. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a13/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[4] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[5] Kryazhimskii A. V., “The problem of optimization of the ensured result: unimprovability of full-memory strategies”, Constantin Caratheodory: An international tribute, ed. T. M. Rassias, World Scientific, New York, 1991, 621–661 | MR

[6] Serkov D. A., “Optimizatsiya garantirovannogo rezultata pri funktsionalnykh ogranicheniyakh na dinamicheskuyu pomekhu”, Dokl. AN, 450:3 (2013), 274–278 | DOI | MR | Zbl

[7] Serkov D. A., “Optimalnoe upravlenie pri kompaktnykh v $L_p$ ogranicheniyakh na pomekhu”, Vest. Udmurt. un-ta. Ser. 1. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 3, 79–87

[8] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[9] Chentsov A. G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Mat. sb., 99(141):3 (1976), 394–420 | MR | Zbl

[10] Petrosyan L. A., Chistyakov S. V., “Ob odnom podkhode k resheniyu igr presledovaniya”, Vest. LGU. Matematika, mekhanika, astronomiya, 1977, no. 1, 77–82 | Zbl

[11] Chistyakov S. V., “K resheniyu igrovykh zadach presledovaniya”, Prikl. matematika i mekhanika, 41:5 (1977), 825–832 | MR

[12] Ukhobotov V. I., “Postroenie stabilnogo mosta dlya odnogo klassa lineinykh igr”, Prikl. matematika i mekhanika, 41:2 (1977), 358–364 | MR

[13] Krasovskii N. N., Tretyakov V. E., “Stokhasticheskii programmnyi sintez dlya pozitsionnoi differentsialnoi igry”, Dokl. AN SSSR, 259:1 (1981), 24–27 | MR

[14] Krasovskii N. N., Krasovskii A. N., Control under lack of information, Birkhäuser, Berlin etc., 1995, 322 pp. | MR

[15] Lukoyanov N. Yu., “K voprosu vychisleniya tseny differentsialnoi igry dlya pozitsionnogo funktsionala”, Prikl. matematika i mekhanika, 62:2 (1998), 188–198 | MR | Zbl

[16] Gomoyunov M. I., Kornev D. V., “K voprosu vychisleniya tseny differentsialnoi igry v klasse kontrstrategii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 59–68

[17] Serkov D. A., “Sintez optimalnogo upravleniya pri $L_p$-kompaktnoi pomekhe”, Tr. XII Vserossiiskoe soveschanie po problemam upravleniya, VSPU-2014 (16–19 iyunya 2014 g.), In-t problem upravleniya im. V. A. Trapeznikova RAN, M., 2014, 688–699 [Elektronnyi resurs], URL: http://vspu2014.ipu.ru/proceedings/prcdngs/688.pdf

[18] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[19] Serkov D. A., “Garantirovannoe upravlenie pri funktsionalnykh ogranicheniyakh na pomekhu”, Matematicheskaya teoriya igr i ee prilozheniya, 4:2 (2012), 71–95 | Zbl