Two-level cooperation in coalitional differential games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 193-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a differential game with prescribed duration and given coalitional partition of the set of players. The cooperative game proceeds in two stages. At the first stage the players (coalitions) maximize the total payoff and then distribute it according to the Shapley value. At the second stage the components of the Shapley value are distributed inside fixed coalitions. We study the time consistency of the proposed two-level cooperative solution. The problem is solved by means of an imputation distribution procedure. The results are illustrated by a differential game of emission reduction.
Keywords: cooperative differential games, Shapley value, imputation distribution procedure, time consistency.
@article{TIMM_2014_20_3_a12,
     author = {L. A. Petrosyan and E. V. Gromova},
     title = {Two-level cooperation in coalitional differential games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {193--203},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a12/}
}
TY  - JOUR
AU  - L. A. Petrosyan
AU  - E. V. Gromova
TI  - Two-level cooperation in coalitional differential games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 193
EP  - 203
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a12/
LA  - ru
ID  - TIMM_2014_20_3_a12
ER  - 
%0 Journal Article
%A L. A. Petrosyan
%A E. V. Gromova
%T Two-level cooperation in coalitional differential games
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 193-203
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a12/
%G ru
%F TIMM_2014_20_3_a12
L. A. Petrosyan; E. V. Gromova. Two-level cooperation in coalitional differential games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 193-203. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a12/

[1] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985, 272 pp. | MR

[2] Krasovskii N. N., Kotelnikova A. N., “O differentsialnoi igre na perekhvat”, Tr. MIAN, 268, 2010, 168–214 | MR | Zbl

[3] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vest. LGU, 1977, no. 4, 46–52

[4] Petrosyan L. A., Danilov N. N., “Ustoichivye resheniya neantagonisticheskikh differentsialnykh igr s tranzitivnymi vyigryshami”, Vest. LGU, 1979, no. 1, 46–54

[5] Petrosyan L. A., Danilov N. N., Kooperativnye differentsialnye igry i ikh prilozheniya, Izd-vo Tomskogo un-ta, Tomsk, 1985, 273 pp. | MR | Zbl

[6] Shevkoplyas E. V., “Ustoichivaya kooperatsiya v differentsialnykh igrakh so sluchainoi prodozhitelnostyu”, Mat. teoriya igr i ee prilozheniya, 2:3 (2010), 79–105 | Zbl

[7] Basar T., Olsder G. J., Dynamic noncooperative game theory, Classics in Applied Math., 23, 2nd ed., SIAM, 1999, 511 pp. | MR | Zbl

[8] Breton M., Zaccour G., Zahaf M., “A differential game of joint implementation of environmental projects”, Automatica J. IFAC, 41:10 (2005), 1737–1749 | DOI | MR | Zbl

[9] Engwerda J., LQ dynamic optimization and differential games, John Wiley Sons, Chichester, 2005, 510 pp.

[10] Neumann J., Morgenstern O., Theory of games and economic behavior, Princeton University Press, Princeton, 1947 | MR | Zbl

[11] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, J. Econom. Dynam. Control, 27:3 (2003), 381–398 | DOI | MR