Two-level cooperation in coalitional differential games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 193-203

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a differential game with prescribed duration and given coalitional partition of the set of players. The cooperative game proceeds in two stages. At the first stage the players (coalitions) maximize the total payoff and then distribute it according to the Shapley value. At the second stage the components of the Shapley value are distributed inside fixed coalitions. We study the time consistency of the proposed two-level cooperative solution. The problem is solved by means of an imputation distribution procedure. The results are illustrated by a differential game of emission reduction.
Keywords: cooperative differential games, Shapley value, imputation distribution procedure, time consistency.
@article{TIMM_2014_20_3_a12,
     author = {L. A. Petrosyan and E. V. Gromova},
     title = {Two-level cooperation in coalitional differential games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a12/}
}
TY  - JOUR
AU  - L. A. Petrosyan
AU  - E. V. Gromova
TI  - Two-level cooperation in coalitional differential games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 193
EP  - 203
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a12/
LA  - ru
ID  - TIMM_2014_20_3_a12
ER  - 
%0 Journal Article
%A L. A. Petrosyan
%A E. V. Gromova
%T Two-level cooperation in coalitional differential games
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 193-203
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a12/
%G ru
%F TIMM_2014_20_3_a12
L. A. Petrosyan; E. V. Gromova. Two-level cooperation in coalitional differential games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 193-203. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a12/