On an input recovery problem in a~linear delay system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 180-192

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of recovering the input of a linear differential equation with delay and propose a solution algorithm that is stable to perturbations. The algorithm is based on the extremal shift principle known in the theory of guaranteed control.
Mots-clés : reconstruction
Keywords: delay system.
@article{TIMM_2014_20_3_a11,
     author = {V. I. Maksimov},
     title = {On an input recovery problem in a~linear delay system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {180--192},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a11/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On an input recovery problem in a~linear delay system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 180
EP  - 192
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a11/
LA  - ru
ID  - TIMM_2014_20_3_a11
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On an input recovery problem in a~linear delay system
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 180-192
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a11/
%G ru
%F TIMM_2014_20_3_a11
V. I. Maksimov. On an input recovery problem in a~linear delay system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 180-192. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a11/