On an input recovery problem in a linear delay system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 180-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of recovering the input of a linear differential equation with delay and propose a solution algorithm that is stable to perturbations. The algorithm is based on the extremal shift principle known in the theory of guaranteed control.
Mots-clés : reconstruction
Keywords: delay system.
@article{TIMM_2014_20_3_a11,
     author = {V. I. Maksimov},
     title = {On an input recovery problem in a~linear delay system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {180--192},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a11/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On an input recovery problem in a linear delay system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 180
EP  - 192
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a11/
LA  - ru
ID  - TIMM_2014_20_3_a11
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On an input recovery problem in a linear delay system
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 180-192
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a11/
%G ru
%F TIMM_2014_20_3_a11
V. I. Maksimov. On an input recovery problem in a linear delay system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 180-192. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a11/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, M., 1974, 458 pp. | MR

[2] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach Sci. Publ., Basel, 1995, 625 pp. | MR | Zbl

[3] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000, 305 pp.

[4] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 291 pp.

[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978, 285 pp.

[6] Krasovskii N. N., Osipov Yu. S., “Lineinye differentsialno-raznostnye igry”, Dokl. AN SSSR, 197:4 (1971), 777–780 | MR

[7] Osipov Yu. S., “Differentsialnye igry dlya sistem s zapazdyvaniem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | MR | Zbl

[8] Maksimov V. I., “Metod funktsii Lyapunova v zadachakh rekonstruktsii vkhodov sistem s posledeistviem”, Sovremennaya matematika i ee prilozheniya, 26, 2005, 78–95

[9] Blizorukova M. S., Maksimov V. I., “Ob odnom algoritme rekonstruktsii traektorii i upravleniya v sisteme s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 109–122

[10] Blizorukova M., “On an algorithm for dynamic reconstruction in systems with delay in control”, System modeling and optimization, CSMO 2011, IFIP International Federation for Information Processing, 391, 2013, 225–234 | Zbl

[11] Maksimov V. I., “O primenenii konechnomernykh upravlyaemykh modelei k zadache rekonstruktsii vkhoda v lineinoi sisteme s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki, 19, no. 1, 2013, 196–204

[12] Maksimov V. I., “On an algorithm of the dynamic reconstruction of inputs in systems with time delay”, Int. J. Advances Appl. Math. Mech., 1:2 (2013), 121–127

[13] Kuzmina N. A., Maksimov V. I., “O rekonstruktsii upravlenii pri izmenenii chasti koordinat nelineinoi dinamicheskoi sistemy s zapazdyvaniem”, Differents. uravneniya, 46:8 (2010), 1177–1190 | MR | Zbl

[14] Akca H., Berezansky L., Maksimov V., “On tracking trajectory and control of a linear hereditary system”, Functional Differ. Eq., 18:1–2 (2011), 13–28 | MR | Zbl

[15] Banks H. T., Kappel F., “Spline approximation for functional-differential equations”, J. Differ. Equat., 34:3 (1979), 406–522 | DOI | MR

[16] Bernier C., Manitius A., “On semigroups in $\mathbb R^n\times L^p$ corresponding to differential equations with delays”, Canad. J. Math., 14 (1978), 897–914 | DOI | MR

[17] Maksimov V. I., “Ob otslezhivanii traektorii dinamicheskoi sistemy”, Prikl. matematika i mekhanika, 75:6 (2011), 951–960 | MR | Zbl