On a group control problem under obstacle avoidance
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 166-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of coordinated goal-oriented target control for a group of control systems that are to realize a joint movement towards a given target set under collision avoidance. The members of the group are obliged to lie within a virtual ellipsoidal container, which performs a reference motion while also avoiding external obstacles specified in advance. We describe a general solution scheme based on decomposing the main problem into auxiliary subproblems, for which we indicate solution methods as well as the necessity of coordinating these solutions at the final stage.
Keywords: group control, flocking, target set, ellipsoidal trajectory, reference motion, collision avoidance
Mots-clés : obstacles, coordination.
@article{TIMM_2014_20_3_a10,
     author = {A. B. Kurzhanskii},
     title = {On a~group control problem under obstacle avoidance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--179},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/}
}
TY  - JOUR
AU  - A. B. Kurzhanskii
TI  - On a group control problem under obstacle avoidance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 166
EP  - 179
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/
LA  - ru
ID  - TIMM_2014_20_3_a10
ER  - 
%0 Journal Article
%A A. B. Kurzhanskii
%T On a group control problem under obstacle avoidance
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 166-179
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/
%G ru
%F TIMM_2014_20_3_a10
A. B. Kurzhanskii. On a group control problem under obstacle avoidance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 166-179. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR | Zbl

[2] Krasovskii N. N., Subbotin A. N., Game-theoretical control problems, Springer-Verlag, New York–Berlin–Heidelberg, 1988, 517 pp. | MR

[3] Kurzhanski A. B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR

[4] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth analysis and control theory, Graduate Texts in Mathematics, 178, Springer-Verlag, New York, 1998, 276 pp. | MR | Zbl

[5] Rockafellar R. T., Wets R. J-B., Variational analysis, Grundlehren der mathematischen Wissenschaften, 317, 2nd printing, Springer, New York, 2004, 733 pp. | MR

[6] Demyanov V. F., Minimaks: differentsiruemost po napravleniyam, Izd-vo LGU, L., 1974, 112 pp. | MR

[7] Chang D. E., Shadden S., Marsden J. E., Olfati-Saber R., “Collision avoidance for multiple agent systems”, Proc. of 42nd IEEE Conference on Decision and Control, v. 1, Maui, Hawai, 2003, 539–543

[8] Junge O., Ober-Bloebaum S., “Optimal reconfiguration of formation flying satellites”, Proc. of 44th IEEE Conference on Decision and Control, and European Control Conference (ECC), Seville, 2005, 66–71 | DOI

[9] Somasundaram K., Baras J. S., “Evolutionary dynamics of collaborative environments with heterogeneous agents”, Proc. of the Mediterranean Conference on Control and Automation (MED 09), Thessaloniki, 2009, 121–125

[10] Olfati-Saber R., “Flocking for multi-agent dynamic systems: algorithms and theory”, IEEE Trans. Automatic Control, 51:3 (2006), 401–420 | DOI | MR

[11] Kurzhanskii A. B., “Zadacha gruppovogo upravleniya. Obschie sootnosheniya”, Dokl. RAN, 426:1 (2009), 20–25 | MR

[12] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Laxenburg–Boston, 1997, 321 pp. | MR | Zbl

[13] Gusev M. I., Kurzhanskii A. B., “K optimizatsii upravlyaemykh sistem pri nalichii ogranichenii. I”, Differents. uravneniya, 7:9 (1971), 1591–1602 | MR | Zbl

[14] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969, 368 pp. | MR

[15] Tyrtyshnikov E. E., Matrichnyi analiz i lineinaya algebra, Fizmatlit, M., 2007, 372 pp.

[16] Kurzhanskii A. B., Mesyats A. I., “Upravlenie ellipsoidalnymi traektoriyami. Teoriya i vychisleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 54:3 (2014), 404–414 | DOI | MR

[17] Kurzhanski A. B., Mitchell I. M., Varaiya P., “Optimization techniques for state -constrained control and obstacle problems”, Proc. of the 6th IFAC Symposium NOLCOS-2004, Stuttgart, 2004, 813–818

[18] Kurzhanskii A. B., Izbrannye trudy A. B. Kurzhanskogo, Izd-vo Mosk. un-ta, M., 2009, 755 pp.

[19] Kurzhanskii A. B., “Zadacha upravleniya po rezultatam izmerenii”, Prikl. matematika i mekhanika, 68:4 (2004), 487–501 | MR

[20] Kurzhanski A. B., “On the problem of measurement feedback control: Ellipsoidal Techniques”, Advances in Control, Communication Networks and Transportation Systems, Systems Control Found. Appl., ed. E. H. Abed, Birkhauser Boston, Boston, 2005, 21–38 | DOI | MR

[21] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 255 pp. | MR

[22] Crandall M. G., Evans L. C., Lions P.-L., “Some properties of viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 282:2 (1984), 487–502 | DOI | MR | Zbl

[23] Fleming W. H., Soner H. M., Controlled Markov processes and viscosity solutions, Springer-Verlag, New York–Berlin–Heidelberg, 1993, 428 pp. | MR | Zbl

[24] Anosov D. V. [i dr.], “K 80-letiyu N. N. Krasovskogo”, Differents. uravneniya, 40:11 (2004), 1443–1456 | MR | Zbl

[25] Anosov D. V. [i dr.], “K vosmidesyatipyatiletiyu Nikolaya Nikolaevicha Krasovskogo”, Differents. uravneniya, 45:10 (2009), 1371–1377 | MR | Zbl

[26] Basar T., Olsder G., Dynamic noncooperative game theory, Acad. Press, London–New York, 1995, 519 pp. | MR | Zbl