On a~group control problem under obstacle avoidance
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 166-179

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of coordinated goal-oriented target control for a group of control systems that are to realize a joint movement towards a given target set under collision avoidance. The members of the group are obliged to lie within a virtual ellipsoidal container, which performs a reference motion while also avoiding external obstacles specified in advance. We describe a general solution scheme based on decomposing the main problem into auxiliary subproblems, for which we indicate solution methods as well as the necessity of coordinating these solutions at the final stage.
Keywords: group control, flocking, target set, ellipsoidal trajectory, reference motion, collision avoidance
Mots-clés : obstacles, coordination.
@article{TIMM_2014_20_3_a10,
     author = {A. B. Kurzhanskii},
     title = {On a~group control problem under obstacle avoidance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--179},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/}
}
TY  - JOUR
AU  - A. B. Kurzhanskii
TI  - On a~group control problem under obstacle avoidance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 166
EP  - 179
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/
LA  - ru
ID  - TIMM_2014_20_3_a10
ER  - 
%0 Journal Article
%A A. B. Kurzhanskii
%T On a~group control problem under obstacle avoidance
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 166-179
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/
%G ru
%F TIMM_2014_20_3_a10
A. B. Kurzhanskii. On a~group control problem under obstacle avoidance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 166-179. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/