On a~group control problem under obstacle avoidance
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 166-179
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the problem of coordinated goal-oriented target control for a group of control systems that are to realize a joint movement towards a given target set under collision avoidance. The members of the group are obliged to lie within a virtual ellipsoidal container, which performs a reference motion while also avoiding external obstacles specified in advance. We describe a general solution scheme based on decomposing the main problem into auxiliary subproblems, for which we indicate solution methods as well as the necessity of coordinating these solutions at the final stage.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
group control, flocking, target set, ellipsoidal trajectory, reference motion, collision avoidance
Mots-clés : obstacles, coordination.
                    
                  
                
                
                Mots-clés : obstacles, coordination.
@article{TIMM_2014_20_3_a10,
     author = {A. B. Kurzhanskii},
     title = {On a~group control problem under obstacle avoidance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--179},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/}
}
                      
                      
                    A. B. Kurzhanskii. On a~group control problem under obstacle avoidance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 166-179. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a10/
