Universal Nash equilibria in $n$-person differential games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 26-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider differential games of a finite number of players in the class of strategies with a guide proposed by Krasovskii and Subbotin. A family of strategies that guarantee the Nash equilibrium for any initial position from a given compact set is constructed. The construction is based on a multivalued function satisfying some stability conditions. The existence of this value function is established.
Keywords: differential games, Nash equilibrium, strategies with a guide.
@article{TIMM_2014_20_3_a1,
     author = {Yu. V. Averboukh},
     title = {Universal {Nash} equilibria in $n$-person differential games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {26--40},
     year = {2014},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a1/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Universal Nash equilibria in $n$-person differential games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 26
EP  - 40
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a1/
LA  - ru
ID  - TIMM_2014_20_3_a1
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Universal Nash equilibria in $n$-person differential games
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 26-40
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a1/
%G ru
%F TIMM_2014_20_3_a1
Yu. V. Averboukh. Universal Nash equilibria in $n$-person differential games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 3, pp. 26-40. http://geodesic.mathdoc.fr/item/TIMM_2014_20_3_a1/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 518 pp. | MR

[3] Subbotina N. N., “Universalnye optimalnye strategii v pozitsionnykh differentsialnykh igrakh”, Differents. uravneniya, 19:11 (1983), 1890–1896 | MR | Zbl

[4] Subbotin A. I., Obobschennye resheniya differentsialnykh uravnenii 1-go poryadka. Perspektivy dinamicheskoi optimizatsii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003, 336 pp.

[5] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 185 pp. | MR

[6] Kononenko A. F., “O ravnovesnykh pozitsionnykh strategiyakh v neantagonisticheskikh differentsialnykh igrakh”, Dokl. AN SSSR, 231:2 (1976), 285–288 | MR | Zbl

[7] Chistyakov S. V., “O beskoalitsionnykh differentsialnykh igrakh”, Dokl. AN SSSR, 259:5, 1052–1055 | MR

[8] Case J. H., “Towards a theory of many players differential games”, SIAM J. Control, 7 (1969), 179–197 | DOI | MR | Zbl

[9] Friedman A., Differential games, Wiley, N.Y., 1971, 368 pp. | MR | Zbl

[10] Başar T., Olsder G. J., Dynamic noncooperative game theory, SIAM Series in Classics in Applied Mathematics, 23, Philadelphia, 1999, 519 pp. | MR

[11] Buckdahn R., Cardaliaguet P., Quincampoix M., “Some recent aspects of differential game theory”, Dyn. Games Appl., 1:1 (2011), 74–114 | DOI | MR | Zbl

[12] Bressan A., Shen W., “Semi-cooperative strategies for differential games”, Internat. J. Game Theory, 32:4 (2004), 561–593 | DOI | MR | Zbl

[13] Bressan A., Shen W., “Small BV solutions of hyperbolic noncooperative differential games”, SIAM J. Control Optim., 43:1 (2004), 194–215 | DOI | MR | Zbl

[14] Cardaliaguet P., “On the instability of the feedback equilibrium payoff in a nonzero-sum differential game on the line”, Advances in dynamic game theory, Ann. Internat. Soc. Dynam. Games, 9, Birkhaüser, Boston, 2007, 57–67 | DOI | MR | Zbl

[15] Cardaliaguet P., Plaskacz S., “Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game”, Internat. J. Game Theory, 32:1, Special anniversary issue. Part 2 (2003), 33–71 | DOI | MR | Zbl

[16] Averboukh Yu., Universal Nash equilibrium strategies for differential games, 2013, 23 pp., arXiv: 1306.2297v1[math.OC]

[17] Aubin J.-P., Viability theory, Birkhaüser, Basel, 1992, 570 pp. | MR

[18] Rockafellar R. T., Wets R., Variational analysis, Grundlehren der Mathematischen Wissenschafte, 317, Springer, New York, 2009, 743 pp. | MR

[19] Averbukh Yu. V., “Infinitezimalnaya kharakterizatsiya ravnovesiya po Neshu v differentsialnoi igre mnogikh lits”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 2, 3–11