Regularization and normal solutions of systems of linear equations and inequalities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 113-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper provides some examples of mutually dual unconstrained optimization problems originating from regularization problems for systems of linear equations and/or inequalities. The solution of each of these mutually dual problems can be found from the solution of the other problem by means of simple formulas. Since mutually dual problems have different dimensions, it is natural to solve the unconstrained optimization problems with smaller dimension.
Keywords: regularization, piecewise quadratic function, unconstrained optimization, mutually dual problems, generalized Newton method.
@article{TIMM_2014_20_2_a9,
     author = {A. I. Golikov and Yu. G. Evtushenko},
     title = {Regularization and normal solutions of systems of linear equations and inequalities},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {113--121},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a9/}
}
TY  - JOUR
AU  - A. I. Golikov
AU  - Yu. G. Evtushenko
TI  - Regularization and normal solutions of systems of linear equations and inequalities
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 113
EP  - 121
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a9/
LA  - ru
ID  - TIMM_2014_20_2_a9
ER  - 
%0 Journal Article
%A A. I. Golikov
%A Yu. G. Evtushenko
%T Regularization and normal solutions of systems of linear equations and inequalities
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 113-121
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a9/
%G ru
%F TIMM_2014_20_2_a9
A. I. Golikov; Yu. G. Evtushenko. Regularization and normal solutions of systems of linear equations and inequalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 113-121. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a9/

[1] Eremin I. I., “O kvadratichnykh i polnokvadratichnykh zadachakh vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1998, no. 12, 22–28 | MR | Zbl

[2] Eremin I. I., Teoriya dvoistvennosti v lineinoi optimizatsii, Izd-vo Yuzhno-Ural. gos. un-ta, Chelyabinsk, 2005, 195 pp. | MR

[3] Tikhonov A. N., “O nekorrektnykh zadachakh lineinoi algebry i ustoichivom metode ikh resheniya”, Dokl. AN SSSR, 163:4 (1965), 591–594 | Zbl

[4] Mangasarian O. L., “A finite Newton method for classification”, Optim. Methods Softw., 17:5 (2002), 913–929 | DOI | MR | Zbl

[5] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 560 pp. | MR

[6] Golikov A. I., Evtushenko Yu. G., “Nakhozhdenie proektsii zadannoi tochki na mnozhestvo reshenii zadach lineinogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 33–47 | Zbl

[7] Golikov A. I., Evtushenko Yu. G., “Obobschennyi metod Nyutona dlya zadach lineinoi optimizatsii s ogranicheniyami-neravenstvami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 98–108

[8] Mangasarian O. L., Nonlinear programming, McCrow-Hill, New York, 1969, 220 pp. | MR

[9] Golikov A. I., Evtushenko Yu. G., “Teoremy ob alternativakh i ikh primenenie v chislennykh metodakh”, Zhurn. vychisl. matematiki i mat. fiziki, 43:3 (2003), 354–375 | MR | Zbl

[10] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 335 pp. | MR

[11] Frank M., Wolfe P., “An algorithm for quadratic programming”, Naval Res. Logist. Quart., 3 (1956), 95–110 | DOI | MR

[12] Albert A., Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977, 224 pp. | MR

[13] Mangasarian O. L., “A Newton method for linear programming”, J. Optim. Theory Appl., 121:1 (2004), 1–18 | DOI | MR | Zbl

[14] Kanzow C., Qi H., Qi L., “On the minimum norm solution of linear programs”, J. Optim. Theory Appl., 116:2 (2003), 333–345 | DOI | MR | Zbl

[15] Garanzha V. A., Golikov A. I., Evtushenko Yu. G., Nguen M. Kh., “Parallelnaya realizatsiya metoda Nyutona dlya resheniya bolshikh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 49:8 (2009), 1369–1384 | MR | Zbl

[16] Popov L. D., “Kvadratichnaya approksimatsiya shtrafnykh funktsii pri reshenii zadach lineinogo programmirovaniya bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:2 (2007), 206–221 | MR | Zbl