@article{TIMM_2014_20_2_a9,
author = {A. I. Golikov and Yu. G. Evtushenko},
title = {Regularization and normal solutions of systems of linear equations and inequalities},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {113--121},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a9/}
}
TY - JOUR AU - A. I. Golikov AU - Yu. G. Evtushenko TI - Regularization and normal solutions of systems of linear equations and inequalities JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 113 EP - 121 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a9/ LA - ru ID - TIMM_2014_20_2_a9 ER -
A. I. Golikov; Yu. G. Evtushenko. Regularization and normal solutions of systems of linear equations and inequalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 113-121. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a9/
[1] Eremin I. I., “O kvadratichnykh i polnokvadratichnykh zadachakh vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1998, no. 12, 22–28 | MR | Zbl
[2] Eremin I. I., Teoriya dvoistvennosti v lineinoi optimizatsii, Izd-vo Yuzhno-Ural. gos. un-ta, Chelyabinsk, 2005, 195 pp. | MR
[3] Tikhonov A. N., “O nekorrektnykh zadachakh lineinoi algebry i ustoichivom metode ikh resheniya”, Dokl. AN SSSR, 163:4 (1965), 591–594 | Zbl
[4] Mangasarian O. L., “A finite Newton method for classification”, Optim. Methods Softw., 17:5 (2002), 913–929 | DOI | MR | Zbl
[5] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 560 pp. | MR
[6] Golikov A. I., Evtushenko Yu. G., “Nakhozhdenie proektsii zadannoi tochki na mnozhestvo reshenii zadach lineinogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 33–47 | Zbl
[7] Golikov A. I., Evtushenko Yu. G., “Obobschennyi metod Nyutona dlya zadach lineinoi optimizatsii s ogranicheniyami-neravenstvami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 98–108
[8] Mangasarian O. L., Nonlinear programming, McCrow-Hill, New York, 1969, 220 pp. | MR
[9] Golikov A. I., Evtushenko Yu. G., “Teoremy ob alternativakh i ikh primenenie v chislennykh metodakh”, Zhurn. vychisl. matematiki i mat. fiziki, 43:3 (2003), 354–375 | MR | Zbl
[10] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 335 pp. | MR
[11] Frank M., Wolfe P., “An algorithm for quadratic programming”, Naval Res. Logist. Quart., 3 (1956), 95–110 | DOI | MR
[12] Albert A., Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977, 224 pp. | MR
[13] Mangasarian O. L., “A Newton method for linear programming”, J. Optim. Theory Appl., 121:1 (2004), 1–18 | DOI | MR | Zbl
[14] Kanzow C., Qi H., Qi L., “On the minimum norm solution of linear programs”, J. Optim. Theory Appl., 116:2 (2003), 333–345 | DOI | MR | Zbl
[15] Garanzha V. A., Golikov A. I., Evtushenko Yu. G., Nguen M. Kh., “Parallelnaya realizatsiya metoda Nyutona dlya resheniya bolshikh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 49:8 (2009), 1369–1384 | MR | Zbl
[16] Popov L. D., “Kvadratichnaya approksimatsiya shtrafnykh funktsii pri reshenii zadach lineinogo programmirovaniya bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:2 (2007), 206–221 | MR | Zbl