Keywords: minimum total weight of vertices and edges, approximation algorithm, performance guarantee, attainable estimates, metric problem, quadratic Euclidean problem.
@article{TIMM_2014_20_2_a8,
author = {E. Kh. Gimadi and A. V. Kel'manov and A. V. Pyatkin and M. Yu. Khachai},
title = {Efficient algorithms with performance estimates for some problems of finding several cliques in a~complete undirected weighted graph},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {99--112},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a8/}
}
TY - JOUR AU - E. Kh. Gimadi AU - A. V. Kel'manov AU - A. V. Pyatkin AU - M. Yu. Khachai TI - Efficient algorithms with performance estimates for some problems of finding several cliques in a complete undirected weighted graph JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 99 EP - 112 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a8/ LA - ru ID - TIMM_2014_20_2_a8 ER -
%0 Journal Article %A E. Kh. Gimadi %A A. V. Kel'manov %A A. V. Pyatkin %A M. Yu. Khachai %T Efficient algorithms with performance estimates for some problems of finding several cliques in a complete undirected weighted graph %J Trudy Instituta matematiki i mehaniki %D 2014 %P 99-112 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a8/ %G ru %F TIMM_2014_20_2_a8
E. Kh. Gimadi; A. V. Kel'manov; A. V. Pyatkin; M. Yu. Khachai. Efficient algorithms with performance estimates for some problems of finding several cliques in a complete undirected weighted graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 99-112. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a8/
[1] Burkard R., Dell'Amico M., Martello S., Assignments, SIAM, Philadelphia, 2009, 382 pp. | MR | Zbl
[2] De Kort J. B. J. M., “Lower bounds for symmetric $K$-peripatetic salesman problems”, Optimization, 22:1 (1991), 113–122 | DOI | MR | Zbl
[3] Dinits E. A., Kronrod M. A., “One algorithm for solving Assignment Problem”, Dokl. AN SSSR, 189:1 (1969), 23–25 | MR
[4] Garey M. R., Johnson D., Computers and intractability: A guide to the theory of $NP$-completeness, Freeman, San Francisco, 1979, 314 pp. | MR | Zbl
[5] Gimadi Edward Kh., “Approximation efficient algorithms with performance guarantees for some hard routing problems”, Proc. II Int. Conf. “Optimization and Applications” (OPTIMA 2011), Petrovac, 2011, 98–101
[6] Håstad J., “Clique is hard to approximate within $n^{1-\varepsilon}$”, Acta Math., 182:1 (1999), 105–142 | DOI | MR
[7] Kleinschmidt P., Schannath H., “A strongly polynomial algorithm for the transportation problem”, Math. Program. Ser. A, 68:1 (1995), 1–13 | MR | Zbl
[8] Krarup J., “The peripatetic salesman and some related unsolved problems”, Combinatorial programming: methods and applications, NATO Advanced Study Inst. Ser., Ser. C: Math. and Phys. Sci., 19, ed. C. R. Reeves, Reidel, Dordrecht, 1975, 173–178 | MR
[9] Park K., Lee K., Park S., “An extended formulation approach to the edge-weighted maximal clique problem”, European J. Oper. Res., 95 (1996), 671–682 | DOI | Zbl
[10] Prim R. C., “Shortest connection networks and some generalizations”, Bell System Technical J., 36:6 (1957), 1389–1401 | DOI
[11] Roskind J., Tarjan R. E., “A note on finding minimum-cost edge-disjoint spanning trees”, Math. Oper. Res., 10:4 (1985), 701–708 | DOI | MR | Zbl
[12] Spieksma F. C. R., “Multi-index assignment problems: complexity, approximation, applications”, Nonlinear assignment problems, algorithms and applications, Comb. Optim., 7, eds. L. Pitsoulis, P. Pardalos, Kluwer Acad. Publ., Dordrecht, 2000, 1–12 | MR | Zbl
[13] G. Gutin, A. Punnen, The traveling salesman problem and its variations, Comb. Optim., 12, Kluwer Acad. Publ., Dortrecht, 2002, 830 pp. | MR
[14] Baburin A. E., Gimadi E. Kh., “Ob asimptoticheskoi tochnosti effektivnogo algoritma resheniya zadachi $m$-PSP na maksimum v mnogomernom evklidovom prostranstve”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 12–24
[15] Galashov A. E., Kelmanov A. V., “2-priblizhennyi algoritm dlya odnoi zadachi poiska semeistva neperesekayuschikhsya podmnozhestv vektorov”, Avtomatika i telemekhanika, 2014, no. 4, 5–19
[16] Gimadi E. Kh., Glazkov Yu. V., Glebov A. N., “Priblizhennye algoritmy resheniya zadachi o dvukh kommivoyazherakh v polnom grafe s vesami reber 1 i 2”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 14:2 (2007), 41–61 | Zbl
[17] Eremin I. I., Gimadi E. Kh., Kelmanov A. V., Pyatkin A. V., Khachai M. Yu., “2-priblizhennyi algoritm poiska kliki s minimalnym chislom vershin i reber”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 134–143
[18] Kelmanov A. V., Pyatkin A. V., “NP-polnota nekotorykh zadach vybora podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 17:5 (2010), 37–45 | MR | Zbl
[19] Kelmanov A. V., Romanchenko S. M., “Priblizhennyi algoritm dlya resheniya odnoi zadachi poiska podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 18:1 (2011), 61–69 | MR | Zbl