Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 88-98
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present the probabilistic analysis of an approximation algorithm for the minimum-weight $m$-peripatetic salesman problem with different weight functions of their routes (Hamiltonian cycles). The time complexity of the algorithm is $O(mn^2)$. We assume that the entries of the distance matrix are independent equally distributed random variables with values in an upper-unbounded domain $[a_n,\infty)$, where $a_n>0$. The analysis is carried out for the example of truncated normal and exponential distributions. Estimates for the relative error and failure probability, as well as conditions for the asymptotic exactness of the algorithm, are found.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
$m$-peripatetic salesman problem, approximation algorithm, time complexity, asymptotic optimality, distribution function, truncated normal, exponential.
Mots-clés : random instances
                    
                  
                
                
                Mots-clés : random instances
@article{TIMM_2014_20_2_a7,
     author = {E. Kh. Gimadi and A. M. Istomin and I. A. Rykov and O. Yu. Tsidulko},
     title = {Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {88--98},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a7/}
}
                      
                      
                    TY - JOUR AU - E. Kh. Gimadi AU - A. M. Istomin AU - I. A. Rykov AU - O. Yu. Tsidulko TI - Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 88 EP - 98 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a7/ LA - ru ID - TIMM_2014_20_2_a7 ER -
%0 Journal Article %A E. Kh. Gimadi %A A. M. Istomin %A I. A. Rykov %A O. Yu. Tsidulko %T Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above %J Trudy Instituta matematiki i mehaniki %D 2014 %P 88-98 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a7/ %G ru %F TIMM_2014_20_2_a7
E. Kh. Gimadi; A. M. Istomin; I. A. Rykov; O. Yu. Tsidulko. Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 88-98. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a7/
