Mots-clés : random instances
@article{TIMM_2014_20_2_a7,
author = {E. Kh. Gimadi and A. M. Istomin and I. A. Rykov and O. Yu. Tsidulko},
title = {Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {88--98},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a7/}
}
TY - JOUR AU - E. Kh. Gimadi AU - A. M. Istomin AU - I. A. Rykov AU - O. Yu. Tsidulko TI - Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 88 EP - 98 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a7/ LA - ru ID - TIMM_2014_20_2_a7 ER -
%0 Journal Article %A E. Kh. Gimadi %A A. M. Istomin %A I. A. Rykov %A O. Yu. Tsidulko %T Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above %J Trudy Instituta matematiki i mehaniki %D 2014 %P 88-98 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a7/ %G ru %F TIMM_2014_20_2_a7
E. Kh. Gimadi; A. M. Istomin; I. A. Rykov; O. Yu. Tsidulko. Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 88-98. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a7/
[1] De Kort J. B. J. M., “A branch and bound algorithm for symmetric 2-peripatetic salesman problems”, European J. of Oper. Res., 10:2 (1993), 229–243 | DOI | MR
[2] Frieze A. M., “On random symmetric traveling salesman problems”, Math. Oper. Res., 29:4 (2004), 878–890 | DOI | MR | Zbl
[3] Gimadi Edward Kh., “On some probability inequalities for some discrete optimization problems”, Oper. Res. Proc. 2005, Selected papers Int. Conf. OR-2005, Springer, Bremen–Berlin, 2006, 283–289 | DOI | Zbl
[4] Gimadi Edward Kh., “Approximation efficient algorithms with performance guarantees for some hard routing problems”, Proc. II Int. Conf. “Optimization and Applications” (OPTIMA 2011), Petrovac, 2011, 98–101
[5] Krarup J., “The peripatetic salesman and some related unsolved problems”, Combinatorial programming: methods and applications, NATO Advanced Study Inst. Ser., Ser. C: Math. and Phys. Sci., 19, ed. C. R. Reeves, Reidel, Dordrecht, 1975, 173–178 | MR
[6] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (eds.), The traveling salesman problem: A guided tour of combinatorial optimization, Wiley, Chichester, 1985, 463 pp. | MR | Zbl
[7] G. Gutin, A. Punnen (eds.), The traveling salesman problem and its variations, Comb. Optim., 12, Kluwer Acad. Publ., Dortrecht, 2002, 830 pp. | MR
[8] Baburin A. E., Gimadi E. Kh., “Ob asimptoticheskoi tochnosti effektivnogo algoritma resheniya zadachi $m$-PSP na maksimum v mnogomernom evklidovom prostranstve”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 12–24
[9] Gimadi E. Kh., Glazkov Yu. V., Tsidulko O. Yu., “Veroyatnostnyi analiz algoritma resheniya trekhindeksnoi $m$-sloinoi planarnoi zadachi o naznacheniyakh na odnotsiklicheskikh podstanovkakh”, Diskretnyi analiz i issledovanie operatsii, 21:1 (2014), 15–29
[10] Gimadi E. Kh., Le Gallu A., Shakhshneider A. V., “Veroyatnostnyi analiz odnogo algoritma priblizhennogo resheniya zadachi kommivoyazhera na neogranichennykh sverkhu vkhodnykh dannykh”, Diskretnyi analiz i issledovanie operatsii, 15:1 (2008), 23–43 | MR | Zbl
[11] Gimadi E. Kh., Perepelitsa V. A., “Asimptoticheskii podkhod k resheniyu zadachi kommivoyazhera”, Upravlyaemye sistemy, 12, In-t matematiki SO AN SSSR, Novosibirsk, 1974, 35–45 | Zbl
[12] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[13] Perepelitsa V. A., Gimadi E. Kh., “Zadacha nakhozhdeniya minimalnogo gamiltonova tsikla v vzveshennom grafe”, Diskretnyi analiz, 15, In-t matematiki SO AN SSSR, Novosibirsk, 1969, 57–65 | MR
[14] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 321 pp. | MR