@article{TIMM_2014_20_2_a6,
author = {A. Yu. Vesnin and V. V. Tarkaev and E. A. Fominykh},
title = {Three-dimensional hyperbolic manifolds with cusps of complexity~10 having maximal volume},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {74--87},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a6/}
}
TY - JOUR AU - A. Yu. Vesnin AU - V. V. Tarkaev AU - E. A. Fominykh TI - Three-dimensional hyperbolic manifolds with cusps of complexity 10 having maximal volume JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 74 EP - 87 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a6/ LA - ru ID - TIMM_2014_20_2_a6 ER -
%0 Journal Article %A A. Yu. Vesnin %A V. V. Tarkaev %A E. A. Fominykh %T Three-dimensional hyperbolic manifolds with cusps of complexity 10 having maximal volume %J Trudy Instituta matematiki i mehaniki %D 2014 %P 74-87 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a6/ %G ru %F TIMM_2014_20_2_a6
A. Yu. Vesnin; V. V. Tarkaev; E. A. Fominykh. Three-dimensional hyperbolic manifolds with cusps of complexity 10 having maximal volume. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 74-87. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a6/
[1] Matveev S., Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics, 9, 2nd ed., Springer, Berlin, 2007, 492 pp. | MR | Zbl
[2] Vesnin A. Yu., Matveev S. V., Fominykh E. A., “Slozhnost trekhmernykh mnogoobrazii: tochnye znacheniya i otsenki”, Sib. elektr. mat. izv., 8 (2011), 341–364 | MR
[3] Frigerio R., Martelli B., Petronio C., “Small hyperbolic 3-manifolds with geodesic boundary”, Experimental Math., 13:2 (2004), 171–184 | DOI | MR | Zbl
[4] Callahan P., Hildebrand M., Weeks J., “A census of cusped hyperbolic 3-manifolds. With microfiche supplement”, Math. Comp., 68:225 (1999), 321–332 | DOI | MR | Zbl
[5] Morwen Thistlethwaite's homepage [site]: Cusped hyperbolic manifolds with 8 tetrahedra, URL: , (data obrascheniya: 11.03.2014) http://www.math.utk.edu/~morwen/8tet/
[6] Jaco W., Rubinstein H., Tillmann S., “Minimal triangulations for an infinite family of lens spaces”, J. Topology, 2:1 (2009), 157–180 | DOI | MR | Zbl
[7] Jaco W., Rubinstein H., Tillmann S., “Coverings and minimal triangulations of 3-manifolds”, Algebr. Geom. Topol., 11:3 (2011), 1257–1265 | DOI | MR | Zbl
[8] Vesnin A. Yu., Fominykh E. A., “Tochnye znacheniya slozhnosti mnogoobrazii Paolyutsi–Tsimmermana”, Dokl. RAN, 439:6 (2011), 727–729 | MR | Zbl
[9] Vesnin A. Yu., Fominykh E. A., “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s geodezicheskim kraem”, Sib. mat. zhurn., 53:4 (2012), 781–793 | MR | Zbl
[10] Frigerio R., Martelli B., Petronio C., “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl
[11] Anisov S., “Exact values of complexity for an infinite number of 3-manifolds”, Moscow Math. J., 5:2 (2005), 305–310 | MR | Zbl
[12] Jeff Weeks' Topology and Geometry Software [site]: SnapPea, URL: , (data obrascheniya: 11.03.2014) http://geometrygames.org/SnapPea/
[13] Hildebrand M. V., Weeks J. R., “A computer generated census of cusped hyperbolic 3-manifolds”, Computers and mathematics, Papers from the conference held at the Massachusetts Institute of Technology (Cambridge, 1989), eds. Erich Kaltofen, Stephen M. Watt, Springer-Verlag, N.Y., 1989, 53–59 | MR
[14] Burton B. A., A duplicate pair in the Snappea census, (data obrascheniya 11.03.2014), arXiv: 1311.7615
[15] Vesnin A. Yu., Tarkaev V. V., Fominykh E. A., “O slozhnosti trekhmernykh giperbolicheskikh mnogoobrazii s kaspami”, Dokl. RAN, 456:1 (2014), 11–14 | DOI
[16] Ratcliffe J., Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, 2nd ed., Springer, N.Y., 2006, 779 pp. | MR | Zbl
[17] Fominykh E. A., “Khirurgii Dena na uzle vosmerka: verkhnyaya otsenka slozhnosti”, Sib. mat. zhurn., 52:3 (2011), 680–689 | MR | Zbl
[18] Matveev S., Petronio C., Vesnin A., “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl
[19] Mednykh A., Vesnin A., “Covering properties of small volume hyperbolic 3-manifolds”, J. Knot Theory Ramifications, 7:3 (1998), 381–392 | DOI | MR | Zbl
[20] Atlas of 3-Manifolds [site]: A free software 3-Manifold Recognizer, URL: , (data obrascheniya: 11.03.2014) http://matlas.math.csu.ru/
[21] Adams C., Sherman W., “Minimum ideal triangulations of hyperbolic 3-manifolds”, Discrete Comput. Geom., 6:2 (1991), 135–153 | DOI | MR | Zbl