Separate reconstruction of solution components with singularities of various types for linear operator equations of the first kind
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 63-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear operator equation of the first kind is investigated. The solution of this equation contains singularities of various types; namely, along with a smooth background, the solution has sharp bends and jump discontinuities. For the construction of a stable approximated solution, a modified Tikhonov method with a stabilizer in the form of the sum of three functionals is proposed. Each of the functionals accounts for the specific character of the corresponding component of the solution. Convergence theorems are formulated, the general discrete approximation scheme of the regularizing algorithm is justified, and results of numerical experiments are discussed.
Keywords: Tikhonov method, ill-posed problem, solution with singularities, regularizing algorithm.
@article{TIMM_2014_20_2_a5,
     author = {V. V. Vasin and E. O. Soboleva},
     title = {Separate reconstruction of solution components with singularities of various types for linear operator equations of the first kind},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {63--73},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a5/}
}
TY  - JOUR
AU  - V. V. Vasin
AU  - E. O. Soboleva
TI  - Separate reconstruction of solution components with singularities of various types for linear operator equations of the first kind
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 63
EP  - 73
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a5/
LA  - ru
ID  - TIMM_2014_20_2_a5
ER  - 
%0 Journal Article
%A V. V. Vasin
%A E. O. Soboleva
%T Separate reconstruction of solution components with singularities of various types for linear operator equations of the first kind
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 63-73
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a5/
%G ru
%F TIMM_2014_20_2_a5
V. V. Vasin; E. O. Soboleva. Separate reconstruction of solution components with singularities of various types for linear operator equations of the first kind. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 63-73. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a5/

[1] Leonov A. S., “Ob ispolzovanii funktsii neskolkikh peremennykh s ogranichennoi variatsiei dlya kusochno-ravnomernoi regulyarizatsii nekorrektnykh zadach”, Dokl. RAN, 351:5 (1996), 592–595 | MR | Zbl

[2] Vogel C.R., Computational methods for inverse problems, SIAM, Philadelphia, 2002, 183 pp. | MR | Zbl

[3] Vasin A. S., Serezhnikova T. I., “Regulyarnyi algoritm approksimatsii dlya integralnykh uravnenii Fredgolma pervogo roda”, Vychisl. tekhnologii, 15:2 (2010), 15–23 | Zbl

[4] Gholami A., Hosseini S. M., “A balanced combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signal”, Signal Processing, 93:7 (2003), 1945–1960 | DOI

[5] Gandes E. J., Romberg J., Tao T., “Stable signal recovery from incomplete and inaccurate measurements”, Comm. Pure. Appl. Math., 59:8 (2006), 1207–1223 | DOI | MR

[6] Bertalmio M., Wese L., Sapiro G., Osher S., “Simultaneous structure and texture image inpainting”, IEEE Trans. Image Process, 12:8 (2003), 882–889 | DOI | MR

[7] Gonsales R., Vuds R., Tsifrovaya obrabotka izobrazhenii, Tekhnosfera, M., 2005, 1072 pp.

[8] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 511 pp. | MR | Zbl

[9] Giusti E., Minimal surfaces and functions of bounded variations, Birkhäuser, Basel, 1984, 240 pp. | MR | Zbl

[10] Adams R. A., Sobolev spaces, Acad. Press, New-York, 1975, 266 pp. | MR | Zbl

[11] Vasin V. V., “Reconstruction of smooth and discontinuous components of solutions to linear ill-posed problems”, Dokl. Math., 87:1 (2013), 127–130 | DOI | MR | Zbl

[12] Vasin V. V., “Approximation of solutions with singularities of various types for linear ill-posed problems”, Dokl. Math., 89:1 (2014), 1–4 | DOI | MR

[13] Acar R., Vogel C. R., “Analysis of bounded variation penalty method for ill-posed problems”, Inverse problems, 10:6 (1994), 1217–1229 | DOI | MR | Zbl

[14] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, VSP, Utrecht–Boston–Köln–Tokyo, 2002, 281 pp. | MR | Zbl

[15] Vasin V. V., Korotkii M. A., “Tikhonov regularization with nondifferentiable stabilizing functionals”, J. Inverse and Ill-Posed Probl., 15:8 (2007), 853–865 | DOI | MR | Zbl

[16] Vainiko G., Functionalanalysis der Diskretisierungsmethoden, Teubner Verlag, Leipzig, 1976, 136 pp.

[17] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, The Netherlands, 1995, 255 pp. | MR | Zbl

[18] Vasin V. V., “Regularization and iterative approximation for linear ill-posed problems in space of functions of bounded variation”, Proc. Steklov Inst. Math., Suppl. 1, 2002, S225–S239 | MR | Zbl

[19] Vasin V. V., “Approximation of nonsmooth solutions of linear ill-posed problems”, Proc. Steklov Inst. Math., 253, Suppl. 1, 2006, S247–S262 | DOI | MR | Zbl

[20] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR