On automorphisms of a generalized hexagon of order $(t,t)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 44-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Possible orders and fixed-point subgraphs are found for elements of prime order in the automorphism group of generalized hexagons $GH(t,t)$. It is proved that the generalized hexagon of order $(6,6)$ is not edge-symmetric.
Keywords: generalized polygon, distance-regular graph
Mots-clés : automorphism.
@article{TIMM_2014_20_2_a3,
     author = {I. N. Belousov},
     title = {On automorphisms of a~generalized hexagon of order~$(t,t)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {44--54},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a3/}
}
TY  - JOUR
AU  - I. N. Belousov
TI  - On automorphisms of a generalized hexagon of order $(t,t)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 44
EP  - 54
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a3/
LA  - ru
ID  - TIMM_2014_20_2_a3
ER  - 
%0 Journal Article
%A I. N. Belousov
%T On automorphisms of a generalized hexagon of order $(t,t)$
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 44-54
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a3/
%G ru
%F TIMM_2014_20_2_a3
I. N. Belousov. On automorphisms of a generalized hexagon of order $(t,t)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 44-54. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a3/

[1] Feit W., Higman G., “The non-existence of certain generalized polygons”, J. Algebra, 1 (1964), 114–131 | DOI | MR | Zbl

[2] Belousov I. N., Makhnev A. A., “Ob avtomorfizmakh obobschennogo shestiugolnika poryadka (3,27)”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 34–44

[3] Yanushka A., “Generalized hexagon of order $(t,t)$”, Israel J. Math., 23:3–4 (1976), 309–324 | DOI | MR | Zbl

[4] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989, 495 pp. | MR | Zbl

[5] Cameron P. J., Van Lint J. H., Graphs, Codes and Desidns, London Math. Society Lecture Note Ser., 43, Cambridge Univ. Press, Cambridge, 1991, 240 pp.

[6] Cameron P. J., Permutation Groups, Cambridge Univ. Press, Cambridge, 1999, 223 pp. | MR | Zbl

[7] Kondratev A. S., Mazurov V. D., “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. mat. zhurn., 41:2 (2000), 359–369 | MR | Zbl