Mots-clés : elimination of quantifiers
@article{TIMM_2014_20_2_a27,
author = {I. A. Sharaya},
title = {Quantifier-free descriptions for interval-quantifier linear systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {311--323},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a27/}
}
I. A. Sharaya. Quantifier-free descriptions for interval-quantifier linear systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 311-323. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a27/
[1] A. Kearfott [et al.], “Standardized notation in interval analysis”, Vychisl. tekhnologii, 15:1 (2010), 7–13 URL: http://www.ict.nsc.ru/jct/getfile.php?id=1345 | Zbl
[2] Sharyi S. P., Konechnomernyi intervalnyi analiz, [Elektron. resurs], URL: , (data obrascheniya 18.02.2013) http://interval.ict.nsc.ru/Library/InteBooks/SharyBook.pdf
[3] Shary S. P., “A new technique in systems analysis under interval uncertainty and ambiguity”, Reliable Computing, 8:5 (2002), 321–418 URL: http://interval.ict.nsc.ru/shary/Papers/ANewTech.pdf | DOI | MR | Zbl
[4] M. Fidler, I. Nedoma, Ya. Ramik, I. Ron, K. Tsimmermann, Zadachi lineinoi optimizatsii s netochnymi dannymi, NITs “Regulyarnaya i khaoticheskaya dinamika”, In-t kompyuternykh issledovanii, M.–Izhevsk, 2008, 288 pp.
[5] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR | Zbl
[6] Oettli W., Prager W., “Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides”, Numerische Mathematik, 6 (1964), 405–409 | DOI | MR | Zbl
[7] Gerlach W., “Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix”, Mathematische Operationsforschung und Statistik, Series Optimization, 12, 1981, 41–43 | MR | Zbl
[8] Vatolin A. A., “O zadachakh lineinogo programmirovaniya s intervalnymi koeffitsientami”, Zhurn. vychisl. matematiki i mat. fiziki, 24:11 (1984), 1629–1637 | MR | Zbl
[9] Rohn J., “Inner solutions of linear interval systems”, Interval Mathematic, Lecture Notes in Computer Science, 212, Springer-Verlag, Berlin–Heidelberg, 1985, 157–158 | DOI | MR
[10] Lakeev A. V., Noskov S. I., “O mnozhestve reshenii lineinogo uravneniya s intervalno zadannymi operatorom i pravoi chastyu”, Sib. mat. zhurn., 35:5 (1994), 1074–1084 | MR | Zbl
[11] Lakeyev A. V., “Computational complexity of estimation of generalized solution sets for interval linear systems”, Vychisl. tekhnologii, 8:1 (2003), 12–23 | Zbl
[12] Beeck H., “Charakterisierung der Lösungsmenge von Intervallgleichungssystemen”, ZAMM, 53:12 (1973), T181–T182 | MR | Zbl
[13] Neumaier A., “Tolerance analysis with interval arithmetic”, Freiburger Intervall-Berichte, 86:9 (1986), 5–19
[14] Kaucher E., “Interval analysis in the extended interval space $\mathbb{IR}$”, Fundamentals of numerical computation, Computer-oriented numerical analysis, Computing Suppl., 2, 1980, 33–49 | MR | Zbl
[15] Gardenes E., Trepat A., “Fundamentals of SIGLA, an interval computing system over the completed set of intervals”, Computing, 24 (1980), 161–179 | DOI | MR | Zbl
[16] Markov S. M., “On directed interval arithmetic and its applications”, J. Universal Computer Science, 1:7 (1995), 514–526 | MR | Zbl
[17] Shary S. P., “Algebraic solutions to interval linear equations and their applications”, Numerical Methods and Error Bounds, Mathematical Research, 89, Akademie Verlag, Berlin, 1996, 224–233 URL: http://interval.ict.nsc.ru/shary/Papers/Herz.pdf | MR | Zbl
[18] Shary S. P., “Outer estimation of generalized solution sets to interval linear systems”, Reliable Computing, 5:3 (1999), 323–335 URL: http://interval.ict.nsc.ru/shary/Papers/GOuter.pdf | DOI | MR | Zbl
[19] Kaucher E., Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume, Dr. Naturwissen Dissertation, Universität Karlsruhe, Karlsruhe, 1973, 271 pp. | MR
[20] Markov S. M., “Extended interval arithmetic involving infinite intervals”, Mathematica Balkanica. New Series, 6:3 (1992), 269–304 | MR | Zbl
[21] Sharaya Irina Aleksandrovna, [Personalnaya stranitsa], URL: , (data obrascheniya: 18.02.2013) http://interval.ict.nsc.ru/sharaya/irash.html