Quantifier-free descriptions for interval-quantifier linear systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 311-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A system of relations of the form $Ax\,\sigma\,b$ is considered, where $\sigma$ is a relation vector with components $=$, $\geq$, and $\leq$ and the parameters (the elements of the matrix $A$ and of the right-hand side $b$) take values from given intervals. What is considered to be the set of solutions of this system depends on which quantifier is related to each interval-valued parameter and on the order of quantifier prefixes for individual parameters. For sets of solutions with a quantifier prefix of a rather general form, we obtain equivalent quantifier-free descriptions in the classical interval arithmetic, in the Kaucher interval arithmetic, and in the usual real arithmetic.
Keywords: interval systems of linear equations and inequalities, Kaucher arithmetic.
Mots-clés : elimination of quantifiers
@article{TIMM_2014_20_2_a27,
     author = {I. A. Sharaya},
     title = {Quantifier-free descriptions for interval-quantifier linear systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {311--323},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a27/}
}
TY  - JOUR
AU  - I. A. Sharaya
TI  - Quantifier-free descriptions for interval-quantifier linear systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 311
EP  - 323
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a27/
LA  - ru
ID  - TIMM_2014_20_2_a27
ER  - 
%0 Journal Article
%A I. A. Sharaya
%T Quantifier-free descriptions for interval-quantifier linear systems
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 311-323
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a27/
%G ru
%F TIMM_2014_20_2_a27
I. A. Sharaya. Quantifier-free descriptions for interval-quantifier linear systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 311-323. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a27/

[1] A. Kearfott [et al.], “Standardized notation in interval analysis”, Vychisl. tekhnologii, 15:1 (2010), 7–13 URL: http://www.ict.nsc.ru/jct/getfile.php?id=1345 | Zbl

[2] Sharyi S. P., Konechnomernyi intervalnyi analiz, [Elektron. resurs], URL: , (data obrascheniya 18.02.2013) http://interval.ict.nsc.ru/Library/InteBooks/SharyBook.pdf

[3] Shary S. P., “A new technique in systems analysis under interval uncertainty and ambiguity”, Reliable Computing, 8:5 (2002), 321–418 URL: http://interval.ict.nsc.ru/shary/Papers/ANewTech.pdf | DOI | MR | Zbl

[4] M. Fidler, I. Nedoma, Ya. Ramik, I. Ron, K. Tsimmermann, Zadachi lineinoi optimizatsii s netochnymi dannymi, NITs “Regulyarnaya i khaoticheskaya dinamika”, In-t kompyuternykh issledovanii, M.–Izhevsk, 2008, 288 pp.

[5] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR | Zbl

[6] Oettli W., Prager W., “Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides”, Numerische Mathematik, 6 (1964), 405–409 | DOI | MR | Zbl

[7] Gerlach W., “Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix”, Mathematische Operationsforschung und Statistik, Series Optimization, 12, 1981, 41–43 | MR | Zbl

[8] Vatolin A. A., “O zadachakh lineinogo programmirovaniya s intervalnymi koeffitsientami”, Zhurn. vychisl. matematiki i mat. fiziki, 24:11 (1984), 1629–1637 | MR | Zbl

[9] Rohn J., “Inner solutions of linear interval systems”, Interval Mathematic, Lecture Notes in Computer Science, 212, Springer-Verlag, Berlin–Heidelberg, 1985, 157–158 | DOI | MR

[10] Lakeev A. V., Noskov S. I., “O mnozhestve reshenii lineinogo uravneniya s intervalno zadannymi operatorom i pravoi chastyu”, Sib. mat. zhurn., 35:5 (1994), 1074–1084 | MR | Zbl

[11] Lakeyev A. V., “Computational complexity of estimation of generalized solution sets for interval linear systems”, Vychisl. tekhnologii, 8:1 (2003), 12–23 | Zbl

[12] Beeck H., “Charakterisierung der Lösungsmenge von Intervallgleichungssystemen”, ZAMM, 53:12 (1973), T181–T182 | MR | Zbl

[13] Neumaier A., “Tolerance analysis with interval arithmetic”, Freiburger Intervall-Berichte, 86:9 (1986), 5–19

[14] Kaucher E., “Interval analysis in the extended interval space $\mathbb{IR}$”, Fundamentals of numerical computation, Computer-oriented numerical analysis, Computing Suppl., 2, 1980, 33–49 | MR | Zbl

[15] Gardenes E., Trepat A., “Fundamentals of SIGLA, an interval computing system over the completed set of intervals”, Computing, 24 (1980), 161–179 | DOI | MR | Zbl

[16] Markov S. M., “On directed interval arithmetic and its applications”, J. Universal Computer Science, 1:7 (1995), 514–526 | MR | Zbl

[17] Shary S. P., “Algebraic solutions to interval linear equations and their applications”, Numerical Methods and Error Bounds, Mathematical Research, 89, Akademie Verlag, Berlin, 1996, 224–233 URL: http://interval.ict.nsc.ru/shary/Papers/Herz.pdf | MR | Zbl

[18] Shary S. P., “Outer estimation of generalized solution sets to interval linear systems”, Reliable Computing, 5:3 (1999), 323–335 URL: http://interval.ict.nsc.ru/shary/Papers/GOuter.pdf | DOI | MR | Zbl

[19] Kaucher E., Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume, Dr. Naturwissen Dissertation, Universität Karlsruhe, Karlsruhe, 1973, 271 pp. | MR

[20] Markov S. M., “Extended interval arithmetic involving infinite intervals”, Mathematica Balkanica. New Series, 6:3 (1992), 269–304 | MR | Zbl

[21] Sharaya Irina Aleksandrovna, [Personalnaya stranitsa], URL: , (data obrascheniya: 18.02.2013) http://interval.ict.nsc.ru/sharaya/irash.html