On certain near-domains and sharply $2$-transitive groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 277-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find sufficient conditions under which a near-domain is a near-field and a $2$-transitive group has a normal regular abelian subgroup. If a sharply $2$-transitive group $T$ ($\mathrm{Char}\,T\ne2$) contains a Frobenius group with involution such that its complement contains a subgroup of order $>2$ that is normal in the stabilizer of a point, then $T$ has a regular abelian normal subgroup (Theorem 1). If, in a near-domain of odd characteristic, there is a near-field containing a multiplicative subgroup of order $>2$ that is normal in a multiplicative group of the near-domain, then the near-domain is a near-field (Theorem 2). This result also holds in the case when the local nilpotent radical of the stabilizer of a point contains a $2$-subgroup of order $\geq16$ and the characteristic is congruent to 1 modulo 16 (Theorem 3).
Mots-clés : group, Frobenius group.
Keywords: near-field, near-domain
@article{TIMM_2014_20_2_a23,
     author = {A. I. Sozutov and E. B. Durakov and E. V. Bugaeva},
     title = {On certain near-domains and sharply $2$-transitive groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {277--283},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a23/}
}
TY  - JOUR
AU  - A. I. Sozutov
AU  - E. B. Durakov
AU  - E. V. Bugaeva
TI  - On certain near-domains and sharply $2$-transitive groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 277
EP  - 283
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a23/
LA  - ru
ID  - TIMM_2014_20_2_a23
ER  - 
%0 Journal Article
%A A. I. Sozutov
%A E. B. Durakov
%A E. V. Bugaeva
%T On certain near-domains and sharply $2$-transitive groups
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 277-283
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a23/
%G ru
%F TIMM_2014_20_2_a23
A. I. Sozutov; E. B. Durakov; E. V. Bugaeva. On certain near-domains and sharply $2$-transitive groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 277-283. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a23/

[1] Karzel H., Inzidenzgruppen. Vorlezungausarbeiten von I. Peiper und K. Sorensen, Univ. Hamburg, 1965

[2] Wähling H., Theorie der Fastkörper, Thalen Ferlag, Essen, 1987, 396 pp. | MR | Zbl

[3] Mazurov V. D., “O dvazhdy tranzitivnykh gruppakh podstanovok”, Sib. mat. zhurn., 31:4 (1990), 102–104 | MR | Zbl

[4] Mazurov V. D., “O tochno dvazhdy tranzitivnykh gruppakh”, Voprosy algebry i logiki, 30, Izd-vo IM SO RAN, Novosibirsk, 1996, 114–118 | Zbl

[5] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., In-t matematiki SO RAN, Novosibirsk, 2014, 253 pp. URL: http://math.nsc.ru/~alglog/18kt.pdf

[6] Popov A. M., Sozutov A. I., Shunkov V. P., Gruppy s sistemami frobeniusovykh podgrupp, Izdatelstvo KGTU, Krasnoyarsk, 2004, 211 pp.

[7] Sozutov A. I., Bugaeva E. V., Busarkina I. V., “O tochno dvazhdy tranzitivnykh gruppakh”, Algebra, logika i prilozheniya, Tez. dokl. Mezhdunar. konf., Krasnoyarsk, 2010, 83–85

[8] Sozutov A. I., Antosyak E. V., “O nekotorykh tochno dvazhdy tranzitivnykh gruppakh”, Teoriya grupp, Tez. soobsch. VII Mezhdunar. shkoly konf., posvyasch. 60-letiyu A. S. Kondrateva, Chelyabinsk, 2008, 89

[9] Hall M., “Projective planes”, Trans. Amer. Math. Soc., 54:2 (1943), 229–277 | DOI | MR | Zbl

[10] Tits J., “Sur les groupes doublement transitifs continus”, Comment. Math. Helv., 26 (1952), 203–224 | DOI | MR | Zbl

[11] Grätzer G., “A theorem on doubly transitive permutation with application to universal algebras”, Fund. Math., 53 (1963), 25–41 | MR | Zbl

[12] Kholl M., Teoriya grupp, IL, M., 1962, 467 pp.

[13] Sozutov A. I., “O gruppakh Shunkova, deistvuyuschikh svobodno na abelevykh gruppakh”, Sib. mat. zhurn., 54:1 (2013), 188–198 | MR | Zbl

[14] Sozutov A. I., Suchkov N. M., Suchkova N. G., Beskonechnye gruppy s involyutsiyami, Izd-vo SFU, Krasnoyarsk, 2011, 149 pp.