On the structure of ultrafilters and properties related to convergence in topological spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 250-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider properties of broadly understood measurable spaces that provide the preservation of maximality when ultrafilters are restricted to filters of the corresponding subspace. We study conditions that guarantee the convergence of images of ultrafilters consisting of open sets under continuous mappings.
Keywords: filter base, measurable space, topology, ultrafilter.
@article{TIMM_2014_20_2_a21,
     author = {E. G. Pytkeev and A. G. Chentsov},
     title = {On the structure of ultrafilters and properties related to convergence in topological spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {250--267},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a21/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - A. G. Chentsov
TI  - On the structure of ultrafilters and properties related to convergence in topological spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 250
EP  - 267
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a21/
LA  - ru
ID  - TIMM_2014_20_2_a21
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A A. G. Chentsov
%T On the structure of ultrafilters and properties related to convergence in topological spaces
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 250-267
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a21/
%G ru
%F TIMM_2014_20_2_a21
E. G. Pytkeev; A. G. Chentsov. On the structure of ultrafilters and properties related to convergence in topological spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 250-267. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a21/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[2] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbilis. un-ta, Tbilisi, 1975, 230 pp. | MR

[3] Chentsov A. G., Morina S. I., Extensions and Relaxations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[4] Chentsov A. G., “Finitely Additive Measures and Extensions of Abstract Control Problems”, J. Math. Sci., 133:2 (2006), 1045–1206 | DOI | MR | Zbl

[5] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp. | MR

[6] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[7] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovrem. matematika i ee pril. (In-t kibernetiki AN Gruzii), 26 (2005), 119–150 | MR

[8] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 113–142

[9] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. II, Izd-vo UGTU-UPI, Ekaterinburg, 2010, 541 pp.

[10] Chentsov A. G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 293–311

[11] Chentsov A. G., “Yarusnye otobrazheniya i preobrazovaniya na osnove ultrafiltrov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 298–314

[12] Chentsov A. G., “K voprosu o predstavlenii ultrafiltrov v proizvedenii izmerimykh prostranstv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 307–319

[13] Chentsov A. G., “K voprosu o predstavlenii elementov prityazheniya v abstraktnykh zadachakh o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. vuzov. Matematika, 2012, no. 10, 45–59 | MR | Zbl

[14] Chentsov A. G., “K voprosu o predstavlenii ultrafiltrov i ikh primenenii v konstruktsiyakh rasshirenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 4, 2013, 289–307

[15] Chentsov A. G., “Ultrafiltry izmerimykh prostranstv kak obobschennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 268–293

[16] Chentsov A. G., “Ob odnom primere postroeniya mnozhestva prityazheniya s ispolzovaniem prostranstva Stouna”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 4, 108–124

[17] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[18] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR | Zbl

[19] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[20] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[21] Chentsov A. G., “Mnozhestva prityazheniya v abstraktnykh zadachakh o dostizhimosti: ekvivalentnye predstavleniya i osnovnye svoistva”, Izv. vuzov. Matematika, 2013, no. 11, 33–50

[22] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[23] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 895 pp.

[24] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, Izd-vo UGTU-UPI, Ekaterinburg, 2008, 388 pp.

[25] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 742 pp. | MR

[26] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Ucheb. posobie dlya vuzov, Vysshaya shkola, M., 1979, 336 pp. | Zbl