Finite simple groups with factorization $G=G_\pi B$, $2\notin\pi$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 242-249

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification of finite simple groups factorizable by a Hall subgroup of odd order and some proper subgroup is obtained.
Keywords: finite simple group, factorization, Hall subgroup.
@article{TIMM_2014_20_2_a20,
     author = {E. M. Pal'chik},
     title = {Finite simple groups with factorization $G=G_\pi B$, $2\notin\pi$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {242--249},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a20/}
}
TY  - JOUR
AU  - E. M. Pal'chik
TI  - Finite simple groups with factorization $G=G_\pi B$, $2\notin\pi$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 242
EP  - 249
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a20/
LA  - ru
ID  - TIMM_2014_20_2_a20
ER  - 
%0 Journal Article
%A E. M. Pal'chik
%T Finite simple groups with factorization $G=G_\pi B$, $2\notin\pi$
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 242-249
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a20/
%G ru
%F TIMM_2014_20_2_a20
E. M. Pal'chik. Finite simple groups with factorization $G=G_\pi B$, $2\notin\pi$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 242-249. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a20/