Finite simple groups with factorization $G=G_\pi B$, $2\notin\pi$
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 242-249
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A classification of finite simple groups factorizable by a Hall subgroup of odd order and some proper subgroup is obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite simple group, factorization, Hall subgroup.
                    
                  
                
                
                @article{TIMM_2014_20_2_a20,
     author = {E. M. Pal'chik},
     title = {Finite simple groups with factorization $G=G_\pi B$, $2\notin\pi$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {242--249},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a20/}
}
                      
                      
                    E. M. Pal'chik. Finite simple groups with factorization $G=G_\pi B$, $2\notin\pi$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 242-249. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a20/
