On $K_{1,3}$-free Deza graphs with diameter greater than 2
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 238-241
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Deza graph with parameters $(v,k,b,a)$ is a $k$-regular graph with $v$ vertices where any two vertices have either $a$ or $b$ common neighbors. We describe $K_{1,3}$-free Deza graphs with diameter greater than 2.
Keywords: $K_{1,3}$-free graphs, Deza graphs, Deza graphs with diameter greater than 2.
@article{TIMM_2014_20_2_a19,
     author = {A. V. Mityanina},
     title = {On $K_{1,3}$-free {Deza} graphs with diameter greater than~2},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {238--241},
     year = {2014},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a19/}
}
TY  - JOUR
AU  - A. V. Mityanina
TI  - On $K_{1,3}$-free Deza graphs with diameter greater than 2
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 238
EP  - 241
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a19/
LA  - ru
ID  - TIMM_2014_20_2_a19
ER  - 
%0 Journal Article
%A A. V. Mityanina
%T On $K_{1,3}$-free Deza graphs with diameter greater than 2
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 238-241
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a19/
%G ru
%F TIMM_2014_20_2_a19
A. V. Mityanina. On $K_{1,3}$-free Deza graphs with diameter greater than 2. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 238-241. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a19/

[1] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR

[2] Deza A., Deza M., “The ridge graph of the metric polytope and some relatives”, Polytopes: Abstract, convex and computational (Scarborough, ON, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 440, ed. T. Bisztriczky et al., Kluwer Acad. Publ., Dordrecht, 1994, 359–372 | MR | Zbl

[3] M. Erickson [et al.], “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Designs, 7 (1999), 359–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[4] Kabanov V. V., Mityanina A. V., “Rebernye tochnye grafy Deza”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 165–177

[5] Blokhuis A., Brouwer A. E., “Determinationof the distance-regular graphs without 3-claws”, Discrete Math., 163:1–3 (1997), 225–227 | DOI | MR | Zbl

[6] Kabanov V. V., Makhnev A. A., “Ob otdelimykh grafakh s nekotorymi usloviyami regulyarnosti”, Mat. sb., 187:10 (1996), 73–86 | DOI | MR | Zbl

[7] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, N.Y.–Berlin–Heidelberg, 1989, 485 pp. | MR | Zbl

[8] Makhnev A. A., Paduchikh D. V., “Novaya otsenka dlya chisla vershin reberno regulyarnykh grafov”, Sib. mat. zhurn., 48:4 (2007), 817–832 | MR | Zbl