Voir la notice du chapitre de livre
@article{TIMM_2014_20_2_a19,
author = {A. V. Mityanina},
title = {On $K_{1,3}$-free {Deza} graphs with diameter greater than~2},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {238--241},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a19/}
}
A. V. Mityanina. On $K_{1,3}$-free Deza graphs with diameter greater than 2. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 238-241. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a19/
[1] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR
[2] Deza A., Deza M., “The ridge graph of the metric polytope and some relatives”, Polytopes: Abstract, convex and computational (Scarborough, ON, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 440, ed. T. Bisztriczky et al., Kluwer Acad. Publ., Dordrecht, 1994, 359–372 | MR | Zbl
[3] M. Erickson [et al.], “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Designs, 7 (1999), 359–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[4] Kabanov V. V., Mityanina A. V., “Rebernye tochnye grafy Deza”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 165–177
[5] Blokhuis A., Brouwer A. E., “Determinationof the distance-regular graphs without 3-claws”, Discrete Math., 163:1–3 (1997), 225–227 | DOI | MR | Zbl
[6] Kabanov V. V., Makhnev A. A., “Ob otdelimykh grafakh s nekotorymi usloviyami regulyarnosti”, Mat. sb., 187:10 (1996), 73–86 | DOI | MR | Zbl
[7] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, N.Y.–Berlin–Heidelberg, 1989, 485 pp. | MR | Zbl
[8] Makhnev A. A., Paduchikh D. V., “Novaya otsenka dlya chisla vershin reberno regulyarnykh grafov”, Sib. mat. zhurn., 48:4 (2007), 817–832 | MR | Zbl