Recognizability of groups $E_7(2)$ and $E_7(3)$ by prime graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 223-229

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the groups $E_7(2)$ and $E_7(3)$ are recognized by prime graph. As corollary, it is completed the positive solution of the Mazurov's problem that every finite group whose the prime graph has at least three connected components is either recognizable by spectrum or isomorphic to $A_6$.
Keywords: finite group, spectrum, prime graph, recognition by spectrum or by prime graph.
Mots-clés : simple group
@article{TIMM_2014_20_2_a17,
     author = {A. S. Kondrat'ev},
     title = {Recognizability of groups $E_7(2)$ and $E_7(3)$ by prime graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {223--229},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a17/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
TI  - Recognizability of groups $E_7(2)$ and $E_7(3)$ by prime graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 223
EP  - 229
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a17/
LA  - ru
ID  - TIMM_2014_20_2_a17
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%T Recognizability of groups $E_7(2)$ and $E_7(3)$ by prime graph
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 223-229
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a17/
%G ru
%F TIMM_2014_20_2_a17
A. S. Kondrat'ev. Recognizability of groups $E_7(2)$ and $E_7(3)$ by prime graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 223-229. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a17/