Lower bounds for the number of hyperplanes separating two finite sets of points
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 210-222
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the $NP$-hard polyhedral separability problem for two subsets $A$ and $B$ of points in general position in $\mathbb R^d$ with the fewest number of hyperplanes in the sense of boolean functions from a given class $\Sigma$. Both deterministic and probabilistic lower bounds are obtained for this number for two different classes of functions $\Sigma$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
$k$-polyhedral separability, boolean function, monochromatic island, combinatorial discrepancy.
                    
                  
                
                
                @article{TIMM_2014_20_2_a16,
     author = {K. S. Kobylkin},
     title = {Lower bounds for the number of hyperplanes separating two finite sets of points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {210--222},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a16/}
}
                      
                      
                    TY - JOUR AU - K. S. Kobylkin TI - Lower bounds for the number of hyperplanes separating two finite sets of points JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 210 EP - 222 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a16/ LA - ru ID - TIMM_2014_20_2_a16 ER -
K. S. Kobylkin. Lower bounds for the number of hyperplanes separating two finite sets of points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 210-222. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a16/
