Lower bounds for the number of hyperplanes separating two finite sets of points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 210-222

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $NP$-hard polyhedral separability problem for two subsets $A$ and $B$ of points in general position in $\mathbb R^d$ with the fewest number of hyperplanes in the sense of boolean functions from a given class $\Sigma$. Both deterministic and probabilistic lower bounds are obtained for this number for two different classes of functions $\Sigma$.
Keywords: $k$-polyhedral separability, boolean function, monochromatic island, combinatorial discrepancy.
@article{TIMM_2014_20_2_a16,
     author = {K. S. Kobylkin},
     title = {Lower bounds for the number of hyperplanes separating two finite sets of points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {210--222},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a16/}
}
TY  - JOUR
AU  - K. S. Kobylkin
TI  - Lower bounds for the number of hyperplanes separating two finite sets of points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 210
EP  - 222
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a16/
LA  - ru
ID  - TIMM_2014_20_2_a16
ER  - 
%0 Journal Article
%A K. S. Kobylkin
%T Lower bounds for the number of hyperplanes separating two finite sets of points
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 210-222
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a16/
%G ru
%F TIMM_2014_20_2_a16
K. S. Kobylkin. Lower bounds for the number of hyperplanes separating two finite sets of points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 210-222. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a16/