Mots-clés : automorphism
@article{TIMM_2014_20_2_a15,
author = {N. D. Zyulyarkina and A. A. Makhnev},
title = {Automorphisms of {Higman} graphs with~$\mu=6$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {184--209},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a15/}
}
N. D. Zyulyarkina; A. A. Makhnev. Automorphisms of Higman graphs with $\mu=6$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 184-209. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a15/
[1] Higman D. G., “Characterization of families of rank 3 permutation groups by the subdegrees, I”, Arch. Math., 21 (1970), 151–156 | DOI | MR | Zbl
[2] Liebeck M. W., Saxl J., “The finite primitive permutation groups of rank 3”, Bull. London Math. Soc., 18:2 (1986), 165–172 | DOI | MR | Zbl
[3] Zyulyarkin N. D., Makhnev A. A., “Avtomorfizmy polutreugolnykh grafov, imeyuschikh $\mu=6$”, Dokl. AN, 426:4 (2009), 439–442 | MR | Zbl
[4] Cameron P., Permutation Groups, London Math. Soc. Student Texts, 45, Cambr. Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl
[5] Makhnev A. A., Tokbaeva A. A., “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami (76,35,18,14)”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 185–194
[6] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Combin., 14:5 (1993), 397–407 | DOI | MR | Zbl
[7] Mac̆aj M., S̆irán̆ J., “Search for properties of the missing Moore graph”, Linear Algebra Appl., 432:9 (2010), 2381–2398 | DOI | MR
[8] Spence E., “Regular two-graphs on 36 vertices”, Linear Algebra Appl., 226/228 (1995), 459–497 | DOI | MR | Zbl